
NOTES ON NOETHERIAN RINGS

Definition 1. A ring R is said to be Noetherian if there are no infinite ascending chains of
ideals Ii ⊂ R of the form

I1 ⊂ I2 ⊂ . . .

Equivalently, all ascending chains of the form

I1 ⊆ I2 ⊆ . . .

terminate, i.e there is an integer k such that

I1 ⊆ I2 ⊆ . . . Ik = Ik+1 = Ik+2 . . .

Theorem 1. A ring R is Noetherian iff every ideal in R is finitely generated, i.e ∀I ⊂ R
such that I is an ideal, ∃r1, . . . , rn ∈ R such that I = 〈r1 . . . rn〉

Proof. (⇒) Assume R is Noetherian, and that there is an ideal that isn’t finitely generated.
Pick r1 ∈ I. Since I − r1 6= ∅ (if it wasn’t we would have that I was finitely generated),
〈r1〉 6= I. Now, we will use a similar construction to generate an infinite ascending chain.
Given r1, . . . rs ∈ I, pick rs+1 ∈ I − 〈r1, . . . rs〉. Then,

〈r1〉 ⊂ 〈r1, r2〉 ⊂ 〈r1, . . . , rs〉 ⊂ . . .

Hence we have generated an infinite ascending chain of ideals in R. But this is a
contradiction, since R is Noetherian. Thus, if R is Noetherian, every ideal is finitely
generated.
(⇐) Now suppose every ideal I ⊂ R is finitely generated. Suppose

I1 ⊆ I2 ⊆ . . .

is an infinite ascending chain of ideals. Let I =
∞⋃
i=1

Ii. Then I is an ideal since 0 ∈ Ii and

∀a, b ∈ I, a ∈ Ik and b ∈ Ij for some i, j ∈ N. Since Ik and Ij are part of an ascending chain,
without loss of generality assume that Ik ⊂ Ij. Then a ∈ Ij and a + b ∈ Ij ⊂ I. Finally,
∀r ∈ R and i ∈ I, i ∈ Ik for some k ∈ N. Since Ik is an ideal, ir = ri ∈ Ik ⊂ I. Since I is
an ideal in R, by our assumption, I is finitely generated. Let I = 〈r1, . . . , rs. Then ∀rj,∃Iij
s.t rj ∈ Iij . Now pick k = max i1, . . . , is. Here k is the highest index among the indices of
the generator-containing ideals Iij . We can pick it because the set of indices is finite. Thus,
r1, . . . , rs ∈ Ik and I = 〈r1, . . . , rs〉 ⊆ Ik ⊆ Ik+1 ⊆ . . .. Also, Ik+l ⊆ I, ∀ l ∈ N. As a result,

I = Ik+1 = Ik+l

Thus, the infinite ascending chain

I1 ⊆ I2 ⊆ . . . ⊆ Ik = Ik+1 = Ik+l

terminates. �

Theorem 2. Let R be a Noetherian ring and I an ideal of R. Then
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2 NOTES ON NOETHERIAN RINGS

(1) R/I is Noetherian
(2) Rn is Noetherian for n ∈ N

Proof. (1) From the correspondence theorem, we know that there is an inclusion
preserving, one-to-one correspondence between the ideals of R/I and the ideals of R
containing I. Thus, consider any ascending chain of ideals of R/I,

I1 ⊆ I2 ⊆ . . .

Then there is a one-to-one between this chain of ideals and the chain of ideals of R given by

I1 ⊆ I2 ⊆ . . .

Since R is Noetherian, this chain stabilizes. Since there is an inclusion-preserving
correspondence between this chain and the proposed chain of ideals of R/I, the ascending
chain of ideals of R/I also stabilizes.
(2) We will prove this by induction. The base case is painfully trivial. R1 ∼= R and R is
Noetherian so R1 is Noetherian. For the inductive hypothesis, assume that ∀n : 1 ≤ n ≤ k,
Rn is Noetherian. For the inductive step, we need to prove that Rk+1 is Noetherian. To
that end, consider an ascending chain of ideals of Rk+1:

I1 ⊆ I2 ⊆ . . . ⊆ Is ⊆ . . .

Consider any Is in this ascending chain and separate it into vectors of k components and
the k + 1th component. Let Is,1 = {(x1, · · · , xk) | (x1, · · · , xk, xk+1) ∈ Is for some xk+1 ∈ R}
and Is,2 = {xi | (x1, · · · , xk, xi) ∈ Is for some (x1, · · · , xk) ∈ Rk}. Now we show that the
Is,1’s and the Is,2’s form ascending chains. First of all, Is,1 and Is,2 are ideals for all s. The
proof is as follows. Since Is is an ideal, (0, . . . , 0) ∈ Is. As a result, (0, . . . , 0) ∈ Is,1 and
0 ∈ Is,1. Now, suppose (a1, . . . , ak), (b1, . . . , bk) ∈ Is,1. Then ∃a, b ∈ Is s.t
a = (a1, . . . , ak, ak+1) and b = (b1, . . . , bk, bk+1). Since Is is an ideal,
a + b = (a1 + b1, . . . ak + bk, ak+1 + bk+1) ∈ Is. Taking the first k components, we conclude
that (a1 + b1, . . . ak + bk) ∈ Is,1. Finally, ∀r ∈ Rkand �

Theorem 3. Hilbert Basis Theorem
Let R be a ring and let R[x] be the polynomial ring of R. If R is Noetherian then R[x] is
Noetherian.

Proof. We will prove that all ideals of R[x] are finitely generated. From Theorem 1, this is
equivalent to R[x] being Noetherian. Let I ⊂ R[x] be an ideal. Define
Ii = {f ∈ I : deg(f) = i}. Then I ′i = {lc(f) : f ∈ Ii} ∪ 0 is an ideal of R, because

(1) ∀a, b ∈ I ′i, ∃f, g ∈ Ii s.t f(x) = axi + f ′(x) and g(x) = bxi + g′(x).
f(x) + g(x) = (a + b)xi + f ′(x) + g′(x) ∈ Ii. As a result, a + b ∈ I ′i.

(2) 0 ∈ I ′i by definition
(3) Let r ∈ R and j ∈ I ′i. Then ∃ f(x) ∈ Ii s.t f(x) = jxi + f ′(x). Thus,

rf(x) = (rj)xi + rf ′(x) ∈ Ii. Consequently, rj = jr ∈ I ′i
Note that I ′i ⊂ I ′i+1 because if a ∈ I ′i, ∃ f(x) = axi + f ′(x). Since I is an ideal,
xf(x) = axi+1 + xf ′(x) ∈ I. deg(xf(x)) = i + 1 so a ∈ I ′i+1. We have thus produced a
chain of ideals of R such that

I ′0 ⊆ I ′1 ⊆ I ′2 ⊆ . . .
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Since R is Noetherian, this chain terminates. Thus ∃ I ′l such that I ′l = I ′l+s. Since the I ′i’s
are all finitely generated, let I ′i = 〈ai,1, . . . , ai,ni

〉. Let fi,j ∈ Ii s.t fi,j = ai,jx
i + f ′

i,j(x). We
prove using induction that I is generated by {fi,j : 0 ≤ i ≤ l, 0 ≤ j ≤ ni}.
Base Case: f = c ∈ I0 = I ′0 so c can be expressed as a combination of a0,1, . . . , a0,n0 since
every ideal in R is finitely generated. For the inductive hypothesis, assume that all
polynomials with degree less than k are generated by the proposed set, i.e for deg(f) < k,
f ∈ 〈{fi,j : 0 ≤ i ≤ l, 0 ≤ j ≤ ni}〉. For the inductive step, let f ∈ I such that deg(f) = k.
Case 1: k ≤ l. f ∈ Ik and lc(f) = a ∈ I ′k so a = c1ak,1 + . . . + cnk

ak,nk
for some

c1, . . . , cnk
∈ R. Set f ′ = f − c1fk,l − . . .− cnk

fk,nk
. Now, the linear combinations of all the

fk,i’s with ci’s produce a k-degree polynomial whose leading coefficient is the same as that
of f . Thus, by subtracting the linear combination from f , we produce a polynomial f ′ that
is reduced by one degree. Thus, deg(f ′) < k and by the inductive hypothesis, we have that
f ′ ∈ 〈{fi,j : 0 ≤ i ≤ l, 0 ≤ j ≤ ni}〉. Since, f = f ′ + c1fk,l + . . . + cnk

fk,nk
, we have that

f ∈ 〈{fi,j : 0 ≤ i ≤ l, 0 ≤ j ≤ ni}〉.
Case 2: l < k. Let f ∈ Ik. Then lc(f) = a ∈ I ′k = I ′l . Now, exactly as in Case 1, we
express a in terms of al,1 through al,nl

. Thus, a = c1al,1 + . . . + cnl
al,nl

. Let
f ′ = f − c1fl,1 − . . . = cnl

fl,nl
. Then deg(f ′) < k, which means

f ′ ∈ 〈{fi,j : 0 ≤ i ≤ l, 0 ≤ j ≤ ni}〉, which in turn means that
f ∈ 〈{fi,j : 0 ≤ i ≤ l, 0 ≤ j ≤ ni}〉.
In conclusion, every ideal of R[x] was shown to be finitely generated. As a result, R[x] is
Noetherian. �

Definition 2. Let (R,+, ∗) be a commutative ring with unity. An R-Module M over the
ring R is defined as a non-empty set such that (M,+) is an Abelian group and ∃ an
function · : R×M 7→M such that ∀x, y ∈M and r, s ∈ R,

(1) r · (s · x) = (rs) · x
(2) r · (x + y) = r · x + r · y
(3) (r + s) · x = r · x + s · x
(4) 1 · x = x

Note that Property (4) is equivalent to 0 · x = 0, so we could have had that as Property (4)
instead.


