PRIMER ON MONOMIAL IDEALS AND IDEAL DECOMPOSITION

SHASHANK SULE

ABSTRACT. This document contains some of the basic facts and observations about Monomial ideals. Know them! And know how to prove them.

Theorem 1. All Prime ideals are primary. All prime ideals are irreducible. In a Noetherian ring all irreducible ideals are primary.

Definition 1. A primary decomposition is a decomposition of I in the finite intersection of primary ideals, i.e $I = I_1 \cap \ldots \cap I_n$ where each I_k is primary

Theorem 2. \sqrt{I} is prime, so $\sqrt{I} = P$ where P is prime. I is thus called P-primary

Theorem 3. If Q P-primary and $f \in R$ then

$$f \in Q \implies Q : f = R$$
$$f \notin Q \implies Q : f \text{ is } P\text{-primary}$$
$$f \notin P \implies Q : f = Q$$

Theorem 4. The colon and radical distribute over intersection, i.e $(I \cap J)$: $f = (I : f) \cap (J : f)$ and $\sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$

Theorem 5. The set of associated primes of I as an ideal is called Ass(I). $\{\sqrt{I:f}\}_{f\in R} = Ass(I)$

Theorem 6. The set of associated primes of M as an R-module is called Ass(M). $Ass(M) = \{I \subseteq R \mid I = ann(m) \forall m \in M\}$

Theorem 7.

Definition 2. A monomial ideal is an ideal $I \subset K[x_1, \ldots, x_n]$ generated by monomials, i.e $I = \langle \mathbf{m}^{\alpha_1}, \ldots, \mathbf{m}^{\alpha_n} \rangle$

Criterion 8. I monomial ideal $\iff \forall f \in I, supp(f) \in I$

Definition 3. A monomial ideal is an ideal $I \subset K[x_1, \ldots, x_n]$ generated by monomials, i.e $I = \langle \mathbf{m}^{\alpha_1}, \ldots, \mathbf{m}^{\alpha_n} \rangle$

Criterion 9. I monomial ideal $\iff \forall f \in I, supp(f) \in I$