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Abstract

In this thesis we study the mathematical properties of the Graph Fourier basis (GFB) and

the applications of diffusion maps from the viewpoint of multi-scale analysis. In Chapter 1

we introduce multiresolution analyses (MRA) and the mathematical foundations of image

processing, and motivate the paradigm of graphs through an example from feature detection.

In Chapter 2, we provide motivation for deriving the GFB from the graph Laplacian by

demonstrating that eigenfunctions of the Euclidean Laplacian on r´π, πs exhibit multi-scale
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In Chapter 3 we introduce diffusion maps from [2] and discuss their applications from the

perspective of low-dimensional embeddings and multi-scale properties. To end the thesis, we

propose Neumann maps as novel constructions that improve on diffusion maps in problems

which involve embedding submanifolds from ambient low-dimensional manifolds.
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Chapter 1

Introduction

With applications as broad and critical as medical imaging or troubling deep fakes, image1

processing is one of the most rapidly evolving fields of science, engineering and mathematics.2

In mathematics, Harmonic Analysis has been at the forefront of developments in this field,3

treating images as functions to be decomposed into pieces useful for various problems.4

More precisely, an image can be represented by a set of finite samples tfpxi, yjqu1ďi,jďn of5

a function f : r0, 1s2 ÞÑ R, where pxi, yjq is a pixel location and fpxi, yjq is its luminescence.6

This “digitized” approach towards images allows resolution, or detail, to be encoded by7

sampling: one can sharpen or blur an image by altering the discretization of the unit8

square, or in other words, representing the image with more or less pixels. In 1989, Mallat9

[21] challenged the practice of tying resolution to sampling. He argued that sampling is10

inherently non-adaptive: some regions within an image can require denser sampling than11

others to obtain a given resolution. In the same paper he proposed Multiresolution Analyses12

(MRAs) as an alternative framework that encoded resolution by the projections of finite-13

energy or L2-functions f onto a sequence of subspaces tVju converging monotonically to14

L2pr0, 1s2q, which we define formally in the next section. Mallat’s work was a landmark15

result in the rapidly growing field of Wavelet Theory in the 20th century. Decades earlier,16

Haar [16] had found a basis for L2pRq using functions of compact support which suggested17

the possibility of sparse representations in the time domain. Grossmann and Morlet took18

this project of finding orthonormal bases for L2pRq further: they proposed wavelets ψpxq19

whose translations and dilations ts1{2ψpspx ´ tqqus,tPR` spanned L2pRq orthogonally [15].20

Yves Meyer proposed an example where the parameters s, t were integers: this came to be21

1



known as the Meyer wavelets [22]. MRAs show that the dilation and translation properties1

of wavelets describe resolution naturally; they have since set the standard in image and2

signal processing. In her work Ten lectures on wavelets [9], Daubechies generalized Haar’s3

example to propose compactly supported wavelets of arbitrary smoothness (unlike Haar’s4

which is not even continuous). The JPEG 2000 algorithm uses Daubechies’ wavelets to5

compress and store images in computers.6

Currently, however, there is another paradigm of signal processing in fashion: the7

paradigm of graphs. Due to the emergence of Spectral Graph Theory [6], signal processing8

has found applications to problems on random sensor networks, high-dimensional data, and9

computer vision [27] where the digitization perspective can often be limited; it is instead10

more efficient to model pixels as vertices of a graph and a signal as a function on those11

vertices. The graph theoretic approach turns out to be quite useful in solving a wide-range12

of problems from cluster detection and non-linear dimensionality reduction to more classical13

applications like denoising and feature detection [23]. Consequently, there has been recent14

interest in defining Multiresolution analyses on graphs [18, 19, 17, 7, 8, 1]. This thesis15

is by no means a summary all these approaches; instead we intend for it to be a careful16

meditation on two important concepts that will highlight the interplay between different17

mathematical tools in creating a fruitful theory of a multiresolution framework; the reader18

interested in the contributions of this work may peruse Section 1.4. We first revisit Mallat’s19

original definition of MRAs; this will require some fundamental tools from Fourier Analysis20

which we introduce in the next section.21

1.1 Fundamentals of Fourier Analysis22

The theorems and techniques of Fourier Analysis are the cornerstones of the mathematics23

of signal and image processing. We begin with the notion of Hilbert space, the infinite24

dimensional analogue of Rn where we will conduct much of our work.25

Definition 1.1.1. Let H be a vector space over C endowed with an inner product x¨, ¨y :26

H ˆH ÞÑ C such that xx, xy ě 0. Setting }x} “ xx, xy we define the topology τ on H to be27

τ “ tTx,δu where Tx,δ “ ty P H | ||x´y|| ă δu. If the Cauchy sequences in H converge with28

2



respect to this topology then H is called a Hilbert space. In other words, a Hilbert Space is1

a complete inner product space.2

Remark 1.1.1. It should be noted that } ¨ } satisfies the properties of a norm so τ is just the3

metric topology induced by the norm. However, a vector space B may not have an inner4

product and yet have a norm and be complete. In that case B is called a Banach space.5

Example 1.1.1. Examples of Hilbert spaces:6

1. Rn7

2. l2pCq “
!

tcnunPZ | cn P C,
ř

nPZ |cn|
2 ă 8

)

. Here l2pCq is the space of square8

summable sequences. For the remainder of this thesis, we will refer to it as l2 as we9

will only work with complex sequences.10

Definition 1.1.2. Let Ω Ă Rn and set V p
µ pΩq “ tf : Ω ÞÑ C |

` ş

Ω |f |
p dµ

˘1{p
ă 8u where11

µ is the Lebesgue measure on R. Furthermore, define the equivalence relation „ on V p
µ as12

f „ g ðñ
ş

Ω |f |
p dµ “

ş

Ω |g|
p dµ. Then the space of p integrable functions, termed Lpµ is13

defined as Lpµ “ V p
µ { „. We henceforth drop the subscript µ since we will work exclusively14

with the Lebesgue measure.15

In the context of Fourier Analysis, we are particularly interested in the case where16

p “ 2. The L2 space, which in addition to being a Banach space, is also a Hilbert space.17

The formula for the inner product is a natural generalization of the formula for the 2-norm:18

Definition 1.1.3. Let f, g P L2pΩq. The L2 inner product between f and g is defined as

xf, gy “

ż

Ω
fg dx. (1.1.1)

Definition 1.1.4. Let Ω “ p´π, πq and let f P L2pΩq. Then f can be written as a linear

combination of complex exponentials:

fpxq “
a.e

ÿ

nPZ
cne

inx, (1.1.2)

where cn “ p1{2πq
şπ
´π fpxqe

inx dx. The series on the right of Equation 1.1.2 is called the19

Fourier Series of f and the coefficients cn are called the Fourier Coefficients.20

3



Remark 1.1.2. Using Euler’s formula einx “ cos pnxq ` i sin pnxq the Fourier Series of f P

L2p´π, πq may be written in the form

fpxq “
a.e
a0 `

ÿ

nPN
an cos pnxq ` bn sin pnxq. (1.1.3)

1

Theorem 1.1.1 ([14, Proposition 3.2.7]). Let f P L2p´π, πq have Fourier coefficients

tcnunPZ. Then Parseval’s identity states that

1

2π

ż

r´π,πs
|f |2 dx “

ÿ

nPZ
|cn|

2. (1.1.4)

2

Remark 1.1.3. Parseval’s identity shows that the Fourier series is a norm preserving trans-3

formation from L2 to l2, and is thus an isometry.4

The theory of Fourier series is just the beginning of the vast and expanding universe of5

Fourier Analysis. A key aspect of the latter is the extension of Fourier Series via Pontryagin6

Duality, to functions defined on R and on Zn.7

Definition 1.1.5. Let f P L1pRq. The Fourier Transform and the Inverse Fourier Trans-

form of f P L1pRq, denoted f̂ and qf respectively are

f̂pξq “

ż

R
fpxqe´iξx dx and qfpxq “

1

2π

ż

R
fpξqeiξx dξ. (1.1.5)

Theorem 1.1.2 ([12, Theorem 5.15]). For f P L1pRq, fpxq “ q

pfpxq almost everywhere.8

Remark 1.1.4. Since L1pRq X L2pRq is dense in L2pRq, when f P L2pRq we can set the9

Fourier transform of f to be the pointwise limit of the Fourier transforms of a sequence10

of L1 functions converging to f in the L2 sense. In other words, let gn Ñ f such that11

gn P L
1pRq. Then pfpξq :“ lim

nÑ8
pgnpξq.12

Theorem 1.1.3 ([12, Lemma 5.19]). Let f, g P L2pRq. Then

ż

R
fpxqgpxq dx “

1

2π

ż

R
pfpξqpgpξq dξ. (1.1.6)

In particular, }f}2 “ p1{
?

2πq} pf}2.13

4



Remark 1.1.5. The function f is said to live in the time domain and its Fourier transform f̂1

is said to live in frequency domain because it tells us how much of each frequency, denoted2

ξ, is present in f .3

Definition 1.1.6. Let f : ZN ÞÑ C. Then the Discrete Fourier Transform of f , denoted f̂

is the function on ZN given by:

pfpnq “
1
?
N

N´1
ÿ

k“0

fpkqe´i
2π
N
nk. (1.1.7)

1.2 Multiresolution Analysis4

The idea behind a Fourier series is that the sequence of subspaces Dn “ spanteinxu|n|ďN5

converges to L2pr´π, πsq as N Ñ8. In 1989, Mallat and Meyer [21] proposed multiresolu-6

tion analyses to generalize this idea of approximating L2 using sequences of subspaces.7

Definition 1.2.1 ([21]). An orthogonal multiresolution analysis with a scaling function ϕ8

is a sequence of closed subspaces tVjujPZ of L2pRq satisfying the following properties:9

1. Monotonicity:

¨ ¨ ¨ Ă V´1 Ă V0 Ă V1 ¨ ¨ ¨ (1.2.1)

The subspace Vj is called a j-level approximation space.10

2. Completeness:
ď

jPZ
Vj “ L2pRq (1.2.2)

3. Trivial intersection:
č

jPZ
Vj “ t0u (1.2.3)

4. Scaling invariance: Let f P L2pRq. Then

fpxq P Vj ðñ fp2xq P Vj`1.

5. Translation: tϕpx´ kqukPZ forms an orthonormal basis for V0.11

5



The germs of Mallat and Meyer’s idea were found in Alfred Haar’s influential work1

Zur theorie der orthogonalen funktionensysteme where he proposed a basis for L2pRq using2

functions of compact support. His result provides an illustrative example of an MRA.3

Example 1.2.1 ([16]). Let ϕpxq “ χr0,1s and define

ϕj,kpxq “ 2j{2ϕp2jx´ kq, j, k P Z.

We define the Haar approximation subspaces as follows:

V0 “ spantϕpx´ kqukPZ,

Vj “ spantϕj,kukPZ.

To prove that the Haar subspaces form a Multiresolution Analysis we verify each of the five4

properties from Definition 1.2.1.5

1. Monotonicity

Suppose f PVj so f “
ř

kPZ
ckϕp2

jx´ kq. Note that

ϕp2jx´ kq “ χ
r k
2j
, k`1

2j
s
“ χ

r 2k

2j`1 ,
2k`2

2j`1 s
“ χ

r 2k

2j`1 ,
2k`1

2j`1 s
` χ

r 2k`1

2j`1 ,
2k`2

2j`1 s
.

As a consequence,

fpxq “
ÿ

kPZ
ckϕp2

jx´ kq

“
ÿ

kPZ
ckχr 2k

2j`1 ,
2k`1

2j`1 s
` ckχr 2k`1

2j`1 ,
2k`2

2j`1 s

“
ÿ

kPZ
ckϕp2

j`1x´ 2kq ` ckϕp2
j`1x´ 2k ´ 1q P Vj`1.

2. Completeness

We need to show that every square integrable function can be written as a (possibly

infinite) linear combination of tϕj,kuj,kPZ. Let f PL2pRq. The idea is to approximate

the Fourier transform of f with a compactly supported Fourier transform pg and then to

approximate g through its projections on Vj . Note that we use the Fourier transform

on f as the limit of Fourier transforms on a sequence of L1 functions converging to f .

Let ε ą 0 be given and since
ş

R |
pf |2 dx ă 8 there exists R ą 0 such that

ż

|x|ěR
| pf |2 dx ă ε2pπ{2q.

6



Let pg “ pfχr´R,Rs. By Plancherel’s theorem,

||f ´ g|| “
1
?

2π
|| pf ´ pg|| ă ε{2. (1.2.4)

Set Pjpgq “
ř

kPZxg, ϕj,kyϕj,k. Note Pj P Vj . The goal is now to calculate ||Pjpgq||2

and prove that it converges to ||g||2. Using the fact that yϕj,k “ 2´j{2e´ikξ{2
j
pϕ
`

ξ
2j

˘

,

by Plancherel’s theorem we have

|xg, ϕj,ky|
2 “

1

4π2
|xpg,yϕj,ky|

2

“
1

4π2
2´j

ˇ

ˇ

ˇ

ż

R
ĝpξq2´j{2e´ikξ{2

j
pϕ
` ξ

2j
˘

dξ
ˇ

ˇ

ˇ

2

“
1

4π2
2j
ˇ

ˇ

ˇ

ż

R
ĝp2jyqe´iky pϕpyq dy

ˇ

ˇ

ˇ

2

“
1

4π2
2j
ˇ

ˇ

ˇ

ÿ

mPZ

ż 2pm`1qπ

2mπ
ĝp2jyqpϕpyqe´iky dy

ˇ

ˇ

ˇ

2

“ 2j
ˇ

ˇ

ˇ

ÿ

mPZ

1

2π

ż 2π

0
ĝp2jpt` 2πmqqpϕpt` 2πmqe´ikt dt

ˇ

ˇ

ˇ

2

“ 2j
ˇ

ˇ

ˇ

1

2π

ż 2π

0

ÿ

mPZ
ĝp2jpt` 2πmqqpϕpt` 2πmqe´ikt dt

ˇ

ˇ

ˇ

2
.

The interchange of the sum and integral is allowed due to the uniform convergence of

Hptq :“
ÿ

mPZ
ĝp2jpt` 2πmqqpϕpt` 2πmq,

where pg has compact support so only finitely many terms are non-zero. Further notice

that the value on the last line is just the kth Fourier coefficient of Hptq. Since the

ϕj,k are mutually orthogonal for each j (due to disjoint support) we have that

||Pjpgq||
2
2 “

ÿ

kPZ
|xg, ϕj,ky|

2 “ 2j
ÿ

kPZ
Ĥpkq “

2j

2π

ż 2π

0
|Hptq|2 dt.

Here the last equality follows due to Parseval’s identity for Fourier Series. To evaluate
ş2π
0 |Hptq|2 dt, observe

|Hptq|2 “
ÿ

mPZ

ÿ

nPZ
ĝp2jpt` 2πmqqpϕpt` 2πmqĝp2jpt` 2πnqqpϕpt` 2πnq.

We select a J such that for all j ą J , we have no cross terms left in the summation.

To that end, pick 2J ą R{π, and suppose that for any n ‰ m there is a t such that

7



ĝp2jpt` 2πmqq and ĝp2jpt` 2πnqq are simultaneously non-zero. Then since pgpξq “ 0

for |ξ| ą R, we must have that 2jpt` 2πmq ă R and 2jpt` 2πnq ă R. Then

|2π| ď |2πpm´ nq| ă |2πm` t| ` | ´ t´ 2πn| ď
R

2j
`
R

2j
ă 2π.

Contradiction. So for every t, ĝp2jpt ` 2πnqqĝp2jpt ` 2πmqq ‰ 0 only when m “ n.

As a consequence,

|Hptq|2 “
ÿ

mPZ
|ĝp2jpt` 2πmqqpϕpt` 2πmq|2.

Employing this to calculate ||Pjpgq||
2
2, we have

||Pjpgq||
2
2 “

2j

2π

ż 2π

0
|Hptq|2 dt

“
2j

2π

ż 2π

0

ÿ

mPZ
|ĝp2jpt` 2πmqqpϕpt` 2πmq|2 dt

“
2j

2π

ÿ

mPZ

ż 2π

0
|ĝp2jpt` 2πmqqpϕpt` 2πmq|2 dt

“
1

2π

ż

R
|pgpξq|2|pϕ

´ ξ

2j

¯

|2 dξ.

Next we want to take the limit of the right side with respect to j but must slide it

through the integral somehow. The Dominated Convergence Theorem provides a way

to do that because

|pgpξq|2|pϕ
´ ξ

2j

¯

|2 ď ||pϕ||8|pgpξq|
2 “ d.

So we have a dominating function d and ||d||1 “
ş

R ||pϕ||8|pgpξq|
2 ă 8 because pgPL2pRq.

Thus

lim
jÑ8

||Pjpgq||
2
2 “

1

2π

ż

R
|pgpξq|2 lim

jÑ8
|pϕ
´ ξ

2j

¯

|2 dξ “
1

2π

ż

R
|pgpξq|2 dξ “

1

2π
||pg||22 “ ||g||

2
2.

As a consequence, there exists K ą J such that for all j ą K, ||Pjpgq ´ g||2 ă ε{2.

Finally, combining this estimate with Equation 1.2.4 we have that

||f ´ Pjpgq||2 “ ||f ´ g ` g ´ Pjpgq||2 ď ||f ´ g||2 ` ||Pjpgq ´ g||2 ă
ε

2
`
ε

2
“ ε.

8



3. Trivial intersection1

Suppose f P
Ş

jPZ Vj . Then f must be constant on every dyadic interval; in particular2

it is constant on r0, 2js for every j P Z. So fpxq “ c P C for x P R, so c “ 0 since3

f PL2pRq.4

4. Scaling invariance5

Let f P Vj which means f “
ř

k P Z
akϕp2

jx´ kq. So fp2xq “
ř

k P Z
akϕp2

j`1x´ kq. The6

converse is identical.7

5. The translation property holds trivially based on the definition of V0.8

1.2.1 Wavelet Spaces9

Since Vj Ă Vj`1, we can find the orthogonal subspace Wj of Vj in Vj`1. Consequently, we

can write Vj`1 “ Vj
À

Wj . Using successive decompositions of Vj we have

Vj`1 “
à

nďj

Wn.

Finally, since
Ť

jPZ Vj “ L2pRq, we get

L2pRq “
à

nPZ
Wn (1.2.5)

The Wj are the wavelet or detail spaces as they capture the details in going from a level j

resolution Vj to a level j ` 1 resolution Vj`1. For the Haar MRA, we can write down an

explicit basis for Wj . The function ψpxq “ χr0,1{2s´χr1{2,1s is known as the Haar (Mother)

Wavelet, and the Haar Wavelet spaces are given by dyadic translations and dilations of ψ.

Wj “ spant2j{2ψp2jx´ kqukPZ.

At each level j the corresponding wavelet ψj,k is supported on the interval r k
2j
, pk`1q

2j
s.10

Consequently, the dilation factor determines the size of the support and the translation11

factor determines its location. Moreover, at a fixed level, the supports are disjoint. These12

properties are useful for expanding a given function in the Haar Basis.13

9



Figure 1.1: Haar wavelets tψj,kuj“0,1,2 on [0,1] with scaling function ϕ “ χr0,1s. Each ψj,k
is a square wave supported on an interval that gets smaller as j increases.

Figure 1.2: Top: We plot heart rate data (light blue) and its level 4 and 8 Haar approxi-
mations. The level 4 and 8 approximations are constant on disjoint dyadic intervals of size
2´4 and 2´8 respectively. Bottom: We plot all the Haar approximations where the heart
rate is given by colour. Notice that the approximations improve by partitioning r0, 1s by
half each time.

In Figure 1.2 the level 4 Haar approximation picks up broader variations in the heart1

rate signal while level 8 picks up fine variations so at increasingly higher scales, we create2

more detailed approximations to the original signal. This is exactly Mallat’s point: we don’t3

10



need to alter the sampling of f . Instead, approximating it in the right basis automatically1

introduces the desired resolution. The Haar Wavelet encodes resolution through factor j2

which partitions r0, 1s into dyadic intervals of size 2´j by the oscillations of ψj,k. At a fixed3

level j the Haar basis function ψp2jx ´ kq picks up variations of f in the dyadic interval4

indexed by k. In this way, the Haar decomposition is adaptive or localized as it adapts to5

the function’s behaviour in different regions of r0, 1s. Lastly, the Haar wavelet forms an6

orthonormal basis for L2r0, 1s so each L2 function can be written as a linear combination7

in the Haar basis, with coefficients recovered using the projection formula. Consequently,8

the Haar wavelet enables efficient reconstruction. These three properties make the Haar9

wavelet an attractive model for decomposing one-dimensional signals, and the definition of10

the MRA describes these three desirable properties mathematically.11

Example 1.2.2 (2-D Haar wavelet). An image is understood as a function g : r0, 1s2 ÞÑ R12

where gpxq is the pixel value at x. Just as we built a Haar basis by dyadic partitions of the13

interval, we may build a Haar basis through dyadic partitions of the unit square and then14

express an image in the Haar basis. The result shown in Figure 1.3 shows how 2-D Haar15

wavelets can compress, or “pixellate”, an image through lower order approximations. The16

details of the 2-D implementation of the Haar Wavelet are found in [31].17

Figure 1.3: Successive 2-D Haar approximations to the image of a Mandrill

11



Example 1.2.3 (Littlewood-Paley form of a Fourier Series [24]). The main point

of classical Fourier analysis is that any square integrable periodic function is equal to its

Fourier series in the L2 norm. In other words, limNÑ8 ||f ´ TNf ||
2
2 “ 0, where TNf “

ř

|n|ďN cne
inx. However, convergence in L2 does not imply pointwise convergence; Lusin

actually conjectured that the convergence for the exponentials in particular was pointwise

almost everywhere [28]. Carleson showed this conjecture to be true [5]; but on the other

hand, Kolmogorov constructed an L1 function whose Fourier Series converged nowhere but

a countable set of points [30]. Thus, there is something special about using the exponential

functions as a basis for L2pr´π, πsq. Naturally, we must ask if we can use the exponentials

to form a multiresolution analysis. The answer is: almost! We first consider the case of

approximation spaces on r´π, πs. Let the scaling function be φ “ χr´π,πs and define Vj as

Vj “ tf P L
2pr´π, πsq | f “

ÿ

|n|ď2j

cne
inxu.

Let us now check if the properties for an MRA hold, and the extent to which they fail.1

1. Monotonicity: Any trigonometric polynomial up to frequency 2j can be written as a2

trigonometric polynomial up to 2j`1 by setting the Fourier coefficients ci zero for 2j ă3

i ď 2j`1. The constant function φ is thus in every subspace Vj and the monotonicity4

condition changes to one-sided monotonicity: V0 Ă V1 Ă V2 Ă ¨ ¨ ¨ .5

2. Scaling: To see sufficiency, let f P Vj . Then f “
ř

|n|ď2j cne
inx and fp2xq “

ř

|n|ď2j cne
i2nx “

ř

|n|ď2j`1 dne
inx where d2n “ cn and 0 otherwise. For necessity,

note that if fp2xq P Vj`1 then

fp2xq “
2j`1
ÿ

n“1

dne
inx “

2j
ÿ

k“1

d2ke
ik2x `

2j´1
ÿ

k“0

d2k`1e
ip2k`1qx

“

2j
ÿ

k“1

d2ke
ik2x ` eix

2j´1
ÿ

k“0

d2k`1e
ik2x “

2j
ÿ

k“1

d2ke
ik2x ` ei{2

2j´1
ÿ

k“0

d2k`1e
ipk`1q2x.

Using the transformation y “ 2x we get that

fpyq “
2j
ÿ

k“1

d2ke
iky ` ei{2

2j´1
ÿ

k“0

d2k`1e
ipk`1qy P Vj .

12



3. Completeness: This is a consequnce of completeness of the exponential basis because

ď

jPZ
Vj “ tf P L2pr´π, πsq | f “

ÿ

|n|ď2j

cneinx for some j P Nu “ L2pr´π, πsq.

4. The translation property doesn’t apply here since φ already spans the whole space V0.1

5. Due to one-way monotonicity, the intersection of these spaces is not trivial: constant2

functions are contained in every approximation space.3

In Example 1.2.1 we mentioned that an ideal MRA should provide resolution, be localized,4

and exhibit efficient reconstruction. The modes of complex exponentials provide a natural5

resolution for r´π, πs because as n increases, the real and imaginary parts of einx oscillate6

more rapidly, thus capturing the notion of detail via partition seen in the Haar wavelet. In7

this way, n in einx plays a similar rule to j in ψj,k. Complex exponentials, like the Haar8

wavelet, also form an orthonormal basis for L2pr´π, πsq so the Fourier coefficients can be9

easily recovered using the projection formula. However, the Fourier basis is not localized10

because sines and cosines do not have compact support like the Haar wavelet.11

1.3 The Paradigm of Graphs12

Despite their wide-ranging applicability, MRAs are sometimes inefficient at solving modern13

problems in image processing. For example, consider the following question. Given the14

image of Barack Obama in Figure 1.4, can we isolate the pixels that indicate his face?15

Figure 1.4: A picture of former U.S. President Barack Obama

13



The Haar decomposition of the image can successfully identify contours, but a more

efficient solution emerges when we think of the image as a weighted graph. There are

several approaches to associate a graph with an image; these are well summarized in [23].

Here we present one simple method that suffices to solve the above problem. Given an

image I as a vector of pixel location and luminescence we form the graph associated with

the image ΓI as follows: Each vertex of ΓI represents a pixel. To assign weights to edges,

we propose that two pixels are similar to each other if they are close to each other and they

have similar luminescence. Consequently, given two pixels i and j we assign the edge weight

wpi, jq “ exp
´

´||xi ´ xj ||
2
2

2σx

¯

exp
´

´||pi ´ pj ||
2
2

2σp

¯

Here xi and xj are the positions of the pixels in a lattice contained within r0, 1s2, pi and pj1

are the luminescences at i and j, and σx and σp are position and luminescence sensitivities2

respectively. Since we have a weighted graph ΓI we use the tools of Spectral Graph the-3

ory explained in Section 2.2. We compute the spectrum of the Laplacian of ΓI and classify4

vertices based on the parity of the eigenvector corresponding to the minimal non-zero eigen-5

value in Figure 1.5. Somehow f is able to almost precisely tell us the pixels that correspond6

to the face! The reason is explained in Section 2.2.7

Figure 1.5: Positive (black) and negative (red) values of f : each dot (or vertex) represents
a pixel and the red coloured dots identify the face. Note that we were able to identify the
face only using information on pixel luminescence and location.

14



1.4 Thesis Contribution1

In Chapter 2 we revisit the curious failure of the Fourier basis as an ideal MRA on r´π, πs2

and examine whether the Graph Fourier Basis as the orthogonal eigenbasis of the Graph3

Laplacian improves on these failures. We show–in the spirit of the Sturm Comparison4

Principle–that the resolution property holds in a weaker sense on graphs (Proposition5

2.2.1). Secondly, we introduce the localization phenomenon in Graph Fourier Bases and6

prove (Propositions 2.3.1 and 2.3.4) that it is equivalent to the existence of joint Dirichlet-7

Neumann eigenfunctions, which do not exist on Euclidean domains. In Chapter 3, we8

introduce Belkin and Niyogi’s Diffusion Maps as a loose Multiresolution Analysis on graphs9

which can be used to draw and detect low-dimensional manifolds encoded in high dimen-10

sional data. In Section 3.3 we propose and implement Neumann maps to improve Diffusion11

Maps in terms of embedding submanifolds within manifolds. All the results mentioned in12

this section are novel; furthermore, the construction of Neumann maps is an application of13

the symmetrization idea in [7] to the reflecting random walk found in [6, Chapter 8] but14

has not (to the author’s knowledge) appeared in previously published work on the subject.15

Lastly, all the simulations and figures have been written by the author in MATLAB with the16

aid of the toolbox in [25]. The code can be found in the Appendix at the end of this work.17
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Chapter 21

Fourier Analysis on Graphs2

Example 1.2.3 shows that the Fourier Basis of exponentials teinxunPZ forms a partial MRA3

for L2pr´π, πsq. The drawback of the Fourier basis is that the basis functions do not exhibit4

the compact support that the Haar wavelets ψj,k do which makes it a poor candidate as an5

image compression scheme because it is unable to adapt to different regions of the image.6

As an illustrative example, consider the Haar and Fourier coefficients of the 32 bit image7

in Figure 2.1.8

Figure 2.1: Comparing the 2-D Haar and DFT coefficients

There are only 4 non-zero Haar coefficients but several small non-zero Fourier coeffi-9
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cients so the image is more conveniently stored in terms of Haar coefficients than Fourier1

coefficients. This is due to the following relationship between the smoothness a function2

and the decay of its Fourier coefficients:3

Theorem. Let f P L2pr´π, πsq and f “
a.e

ř

nPZ cne
inx. Then if f P Ck then cn “ Opn´kq.4

An image with a blob is like a C0 function that is not C1 so its Fourier coefficients decay5

slowly like 1{n. That is why we see several small but non-zero coefficients in the turquoise6

regions of the real and imaginary parts of the Fourier Coefficients.7

In this section, we will present a theory for Fourier Series on graphs which will hopefully8

fix problems such as non-localization seen in Fourier Series on intervals. First we will use9

the spectral theorem for the Euclidean Laplacian to prove why teinxu emerges as a basis of10

functions for L2pr´π, πsq. Then using the spectral theorem for the graph Laplacian we will11

present an analogue of a Fourier basis for graphs. In the latter part of the section, we will12

compare the Fourier bases in the two settings. In particular, we find that the resolution13

property of the Fourier basis on r´π, πs holds in a weaker sense. On the other hand, we14

present some graphs where the Fourier basis is localized, and hence adaptive. We prove15

that this phenomenon on graphs is equivalent to the existence of joint Dirichlet-Neumann16

spectra on subgraphs, which is again not possible in the Euclidean case. However, the17

localized basis functions are sometimes not orthogonal so we compromise on the efficient18

reconstruction property of the Fourier Series.19

2.1 Properties of eigenfunctions of ∆ on r´π, πs20

In this section we justify the important properties of the Fourier basis teinxunPZ from the21

point of view of spectral theory. Recall that in Chapter 1 we demonstrated the following22

facts about the complex exponentials (or equivalently trigonometric functions):23

1. Resolution. Let Sn (resp. Cn) be the set of vanishing points of sin pnxq (resp24

cos pnxqq. Then |Sn| “ 2n ` 1 “ |Cn| ` 1. The control on the number of oscillations25

as a function of frequency n allows the notion of “fineness” to be encoded within the26

trigonometric functions.27
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2. Non-adaptivity. sin pnxq and cos pnxq do not vanish on any open subsets of r´π, πs.1

3. Reconstruction and completeness. Let f : r´π, πs ÞÑ R and
ş

r´π,πs |f |
2 dx ă 8.

Then

fpxq “
ÿ

nPZ
cne

inx where cn “

ż

r´π,πs
fpxqeinx dx.

We demonstrate that properties (2) and (3) also hold for the set of Laplacian eigen-2

functions on a Euclidean domain Ω Ă Rn. Furthermore, property (1) is a special property3

of Laplacian eigenfunctions on 1-Dimensional connected manifolds. Before we prove prop-4

erties (1) and (2), we state all the relevant definitions that will lead to a statement of the5

spectral theorem for compact self-adjoint operators on separable Hilbert spaces that will6

justify property (3). The discussion in this section is a curation of the spectral theory of7

linear elliptic equations presented in [11] and [13]. For more detailed intuition, refer to the8

Appendix. Furthermore, we denote the space of k-times differentiable functions as CkpΩq9

and the space of compactly supported k-times differentiable functions as Ckc pΩq . We will10

occasionally drop Ω when there is no ambiguity about the domain.11

Definition 2.1.1. Let u : Ω ÞÑ R, u P C2. The Laplacian of u, denoted ∆u, is the function

∆u “
n
ÿ

i“1

B2u

Bx2
i

.

Definition 2.1.2. We say that λ P R and u P C2pΩq are, respectively, a Dirichlet eigenvalue

and a Dirichlet eigenfunction of the Laplacian ∆ if they satisfy

´∆u` λu “ 0 in Ω,

u ” 0 on BΩ. (2.1.1)

When equation 2.1.1 is replaced by Bnu “ 0 then u and λ are called Neumann eigenfunction12

and eigenvalue respectively.13

The main lesson of the spectral theory of elliptic operators is that C2pΩq is not the right14

setting to study solutions to the equation ∆u` λu “ f where f P L2pΩq. Instead, it turns15

out that the theory is much richer when we switch to the setting of weak derivatives. For16

the remainder of this section, we assume Ω Ď Rn is an open simply connected domain.17
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Definition 2.1.3. Let u, vi P L
1 for 1 ď i ď n and set gipxq “ upx1, . . . , x, xi`1, . . . , xnq as

the restriction of u to the ith coordinate and suppose they satisfy

ż

Ωi

giϕdx “ ´

ż

Ωi

viϕdx.

for every px1, . . . , xnq P Ω and ϕ P C8c pΩiq where Ωi is the projection of Ω in the ith co-1

ordinate. Then vi is a weak (partial) derivative of u in the ith direction, denoted v “ ui.2

If u has weak derivatives in every direction then the weak derivative of u is the vector of3

weak partial derivatives of u denoted ∇u.4

Definition 2.1.4. We may keep taking weak partial derivatives in all possible directions

and define the Sobolev Space W k,p as the space of functions whose first k weak derivatives

are in Lp, i.e.,

W k,ppΩq “ tu : u has k weak derivatives and ||∇ju||p ă 8 for 1 ď j ď ku,

where ||∇ju||pp “
ż

Ω

ÿ

mĂrns,|m|“j

|um|
p dx. We also define the space

W k,p
0 pΩq “ C8c XW

k,p.

Here, the closure is with respect to the Sobolev norm ||u||Wk,p “
ř

1ďjďk ||∇ju||p. As

usual, in the case p “ 2, Sobolev spaces are also Hilbert spaces (since their weak derivatives

are in L2) so we denote W 1,2 “ H1 and W 1,2
0 “ H1

0 . Note, however, that the H1 and L2

inner products are different

xf, gyL2 “

ż

Ω
fg dx versus xf, gyH1 “

ż

Ω
fg `∇f ¨∇g dx.

The main point of introducing Sobolev spaces is to state the weak formulation of the eigen-5

value problem 2.1.2.6

Definition 2.1.5. Let u P H1
0 , f P L2, and λ P R satisfy

ż

Ω
∇u ¨∇v ` λuv dx “

ż

Ω
fv dx for every v P H1

0 . (2.1.2)

When f “ 0, u is a weak Dirichlet eigenfunction. Similarly, if H1
0 is replaced with H1 then7

u is a weak Neumann eigenfunction.8
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The following proposition defines ∆ in the “weak sense” on H1
0 .1

Proposition 2.1.1. Let ´∆u ` λu “ f if and only if there exists f P L2pΩq such that2

Equation 2.1.2 is satisfied. Then ∆ is well-defined as an operator from H1
0 to L2.3

From here on, we will think of ∆ in the sense of Proposition 2.1.1 with the understanding4

that when u is sufficiently smooth, it is the same as the operator in Definition 2.2.5. The5

next proposition justifies the terminology of Dirichlet and Neumann in Definition 2.1.5:6

Proposition 2.1.2. Let u P C2 be a Dirichlet (resp. Neumann) eigenfunction. Then u is7

a weak Dirichlet (resp. Neumann) eigenfunction.8

The main point of working in Sobolev spaces is that the converse to Proposition 2.1.29

holds. This is a consequence of the Elliptic Regularity Theorem or the stronger An-10

alytic Regularity Theorem. To state the analytic regularity theorem we recall the11

definition of multivariate analyticity.12

Definition 2.1.6. Let f : U ÞÑ R where U Ď Rn. Then f is analytic if for every x0 P U D rx0

s.t. for |x´ x0| ď rx0

fpxq “
ÿ

tPNn0

atpx´ x0q
t,

with the power series on the right being absolutely convergent in the given neighbourhood.13

Here Nn0 is the set of all n-tuples of the natural numbers including 0 and xt “ Πn
i“1x

ti
i .14

Theorem 2.1.3 (Analytic Regularity Theorem [13, Theorem 29]). If u P H1
0 pΩq15

such that ´∆u` λu “ f and f is analytic then u is also analytic in Ω.16

The uniqueness principle for analytic functions provides the following result on the non-17

localization of Laplacian eigenfunctions:18

Corollary 2.1.4. Dirichlet (resp. Neumann) eigenfunctions cannot vanish in any open19

neighbourhood of Ω.20

Thus we see that weak Dirichlet (resp. Neumann) Eigenfunctions, when they exist, are21

analytic and solve the Dirichlet (resp. Neumann) problem. But why should they exist in22

the first place? And why should their completion be all of L2pΩq? This is where we switch23

to the theory of operators on Hilbert Spaces.24
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Definition 2.1.7. Let T : X ÞÑ Y be a linear operator between Hilbert spaces over C with1

the metric topology induced by the norm. Then2

1. T is compact ðñ for every bounded set B Ă X, T pBq is compact in Y ðñ every3

bounded sequence fn has a convergent subsequence in Tfn.4

2. T is self-adjoint ðñ xx, Tyy “ xTx, yy.5

3. T is positive ðñ xx, Txy ą 0.6

4. T is bounded ðñ DM such that ||Tu||Y ďM ||u||X .7

Example 2.1.1. ∆ on H1
0 pΩq is bounded and self-adjoint, but not compact or positive.8

1. ∆ is self-adjoint: Let u, v P H1
0 . Then according to the weak formulation of ´∆u “ f9

we have that x´∆u, vy “ xf, vy “
ş

Ω∇u ¨∇v dx “ xu, gy “ xu,´∆vy where ´∆v “ g.10

The same proof holds in H1.11

2. ∆ is not compact: Let Ω “ r´π, πs and fn “
1

2πe
inx. Then ∆fn “

´n2

2π e
inx. However,12

||∆fn ´∆fm||2 “
?
n4 `m4 ě

?
2. Thus, t∆fnu is not Cauchy so since L2pr´π, πsq13

is complete, it is not convergent.14

3. ∆ : H1
0 pΩq ÞÑ L2pΩq is bounded as an operator. This is because of the way the Riesz

Representation Theorem used in Proposition 2.1.1 gives the L2 norm of ∆u “ f

||∆u||2 “ sup
vPH1

0

xf, vy

||v||H1

“ sup
vPH1

0

ş

Ω∇u ¨∇v dx
||v||H1

ď ||u||H1 .

4. ∆ is not positive: The counterexample occurs when Ω “ r´π, πs and u “ sinpxq.15

We are now ready to state the spectral theorem:16

Theorem 2.1.5 (Spectral Theorem [13, Theorem 6]). Let A : H ÞÑ H be a compact,17

self-adjoint, positive operator on the Hilbert space H. When H is separable, i.e it admits a18

countable basis, H admits a countable orthogonal basis tununPZ and a decreasing sequence19

λn ě 0 such that20

1. Kun “ λnun,21
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2. λn “ sup
uPHKn´1

xu,Kuy
||u||2

“ Snpuq. Here Hn´1 “ spanpu1, . . . , un´1q.1

The spectral theorem states that a compact, self-adjoint, and positive operator A admits2

a countable spectrum and that the eigenfunctions span the Hilbert space when it is separable.3

Additionally, the eigenvalues can be computed variationally through the quotient found in4

part (2). However, we must note that ui may not always be the minimizing element of the5

functional Snpuq. Furthermore, the spectral theorem cannot be directly applied to ∆ on6

L2pΩq because ∆ is not positive or compact. However, the Resolvent [13] gives an equivalent7

formulation of the eigenvalue problem and helps us apply Theorem 2.1.5:8

Definition 2.1.8. Fix t P C. Then the resolvent Rt is the operator:

Rt “ p∆´ tIq´1.

Remark 2.1.1. It is a priori unclear whether ∆ ´ tI is even invertible for any t. However,9

the following lemma shows that such a t must exist because of the boundedness of ∆.10

Lemma 2.1.6. Rt is well-defined for some t P C.11

Proof. First we note that for an operator between Hilbert spaces A : H ÞÑ K, pI ´ Aq is

invertible when ||A|| ă 1 and the inverse is given by

pI ´Aq´1 “
ÿ

ně0

An.

This is a “geometric series” for operators whose convergence is shown by proving that

partial sums are Cauchy using the triangle inequality and the ||A|| ă 1 condition. The

only preliminary step is to note that the vector space of bounded operators on H to K is

itself complete under the metric topology induced by the norm. Invertibility follows from

multiplying the series on the right by I ´ A, therefore making it to telescope to I. Now

note that

p∆´ tIq “ ´tpI ´∆{tq.

The operator on the right is invertible whenever |t| ą ||∆|| due to the geometric series.12

Next, we prove that the resolvent has all the necessary properties as an operator from13

L2pΩq to L2pΩq.14
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Lemma 2.1.7. Rt is self-adjoint, positive, and compact.1

Proof. Self-adjointedness follows from the Neumann series expression of Rt. Rt is positive2

by the triangle inequality. To prove compactness, note that ∆`tI acts from H1
0 pΩq to L2pΩq3

so Rt “ p∆ ` tIq´1 acts on L2pΩq to H1
0 . Furthermore, ∆ ` tI is bounded and bijective4

(since it has a well-defined inverse) so by the open mapping theorem its inverse is bounded.5

Hence Rt is bounded in H1
0 . Now let txnu be a bounded sequence in L2. Then Rtxn is6

bounded in H1
0 . But by the Rellich-Kondrachov theorem [11], a bounded sequence in H1

07

has a convergent subsequence in L2pΩq. Thus, we have that Rt : L2 ÞÑ L2 is a compact8

operator.9

Lemma 2.1.8. Let u P H1
0 pΩq. Then ∆u “ λu (in the weak sense) ðñ Rtu “

1
t`λu (in10

the weak sense).11

Proof. ∆u “ λu ðñ ∆u`tu “ λu`tu “ p∆`tIqu “ pt`λqu ðñ 1
t`λu “ p∆`tIq

´1u “12

Rtu.13

Theorem 2.1.9. The solutions to the Dirichlet eigenvalue problem tununPN form a count-

able basis for DpΩq. Furthermore, the eigenvalues are given by

λn “ inf
uPHKn´1

xu,Kuy

||u||22
“ inf

uPHKn´1

ş

Ω |∇u|
2 dx

ş

Ω u
2 dx

“ Snpuq. (2.1.3)

HereHn´1 “ spanpu1, . . . , un´1q and Sn is the Rayleigh quotient.14

Proof. First, note that from Example 1.2.1 we have that DpΩq Ă L2pΩq is separable because15

the Haar wavelets tψn,kun,kPZ form a countable orthogonal basis for L2pΩq. Moreover, due16

to Lemma 2.1.6 Rt exists and Lemma 2.1.7 combined with Theorem 2.1.5 proves that the17

eigenfunctions of Rt form a countable basis for D. However, Lemma 2.1.8 proves that the18

eigenfunctions of Rt are the Dirichlet eigenfunctions of ∆ so the eigenfunctions of ∆ form a19

countable orthogonal basis for D. Equation 2.1.3 is a consequence of Part (2) of Theorem20

2.1.5 and Lemma 2.1.8.21

Remark 2.1.2. The above argument is also true for functions with Neumann conditions.22

Most of the proof is identical, except for that of the compactness of the resolvent because23
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it relies on the embedding of H1
0 pΩq in L2pΩq. Neumann eigenfunctions are not necessarily1

in H1
0 pΩq so we cannot use this result. However, if we assume that the boundary of Ω is2

Lipschitz then the resolvent is compact.3

Lemma 2.1.10. Let Ω P Rn be a bounded domain with smooth boundary. Then if Du such4

that ∆u “ 0 and u “ 0 on BΩ then u ” 0.5

Proof. Note that due to Corollary 2.1.3, we have that u P C8 so we can freely use integration6

by parts. Consequently,
ş

Ω |∇u|
2 dx “

ş

Ω∇u ¨∇u dx “
ş

Ω∇ ¨ pu∇uq dx ´
ş

Ω u∆u “ 0 due7

to the divergence theorem and the harmonic condition. Thus, uxi “ 0 for every i ď n so8

u ” C on Ω. The continuity of u up to BΩ proves that C “ 0.9

Theorem 2.1.11. Let ∆u “ λu for some λ P R such that u “ ∇u ¨ n̂ “ 0 on BΩ. Then10

u ” 0.11

Proof. We use Rellich’s identity [26] for Dirichlet eigenvalues which states that if u is a

Dirichlet eigenfunction with eigenvalue λ then setting r2pxq “
řn
i“1 x

2
i we have

λ “

ş

BΩ |∇u ¨ n̂|
2|∇r2 ¨ n̂|2 ds

4
ş

Ω u
2 dx

.

But since ∇u ¨ n̂ “ 0 due to the Neumann condition, we get that λ “ 0 so from Lemma12

2.1.10 u ” 0.13

Finally, we prove a rather unique result that gives us the location of zeroes of Laplacian14

eigenfunctions when Ω “ r´π, πs15

Theorem 2.1.12 (Sturm Comparison Theorem [10]). Let Ω “ ra, bs Ď R with u`λu “16

0 and v`µv “ 0 where λ ą µ. Then u vanishes at least once between the consecutive zeroes17

of v.18

Proof. We compute the Wronskian, W pu, v, xq “ u1v´uv1. Assume that a, b are consecutive19

zeroes of v such that vptq ‰ 0 P pa, bq. Note that we may assume without losing generality20

that v1paq ě 0 and v1pbq ď 0. Suppose towards a contradiction that u does not vanish21

on pa, bq. Then W pu, v, aq “ upaqv1paq ě 0 and W pu, v, bq “ upbqv1pbq ď 0. However,22

W 1pa, b, tq “ uv2 ´ u2v “ pλ ´ µquv ą 0 so W is increasing. This is a contradiction since23

W pbq ď 0. As a consequence, u had to vanish in pa, bq.24
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Example 2.1.2. Consider Ω “ r´π, πs. Then for any u P C2, ∆u “ u2. Furthermore,1

notice that tsinpnxqu and tcos pnxqu for n P N are the Dirichlet and Neumann eigenfunc-2

tions of ∆ respectively. In fact, from the uniqueness of second order linear ordinary dif-3

ferential equations, we have that these are the only eigenfunctions given the boundary4

conditions. As a consequence, from Theorem 2.1.9, we get that for any f P L2pr´π, πsq,5

f “
ř8
n“0 an cos pnxq`bn sin pnxq “

ř

nPZ cne
inx, where equality holds in the L2 sense. Ad-6

ditionally, from Corollary 2.1.4 we get that sinpnxq and cos pnxq are non-localized. Finally,7

with Theorem 2.1.12, we have that sinppn ` 1qxq vanishes at least as many times as the8

interior zeroes of sinppn`1qxq. Observing that sin pn` 1qx vanishes on the endpoints of the9

interval, we prove that sin pn` 1qx has two more zeroes than sinpnxq. With the fact that10

sinpxq vanishes thrice on r´π, πs, we conclude via induction that sinpnxq vanishes at least11

2n` 1 times. A similar argument shows that cospnxq vanishes at least 2n times. Thus, the12

three properties attributed to complex exponentials at the start of the section are really the13

analytic properties of the spectra of Laplacians.14

As a concluding remark to this section, we pause here to reflect on why Sobolev Spaces15

are an appropriate setting to study elliptic equations like the Dirichlet problem. First, it is16

much easier to show that a function has a weak derivative than it is to show that it has a17

classical one. Second, proving the existence, orthogonality, and completeness of eigenfunc-18

tions is easier in the general setting of Hilbert Spaces than in the setting of continuously19

differentiable functions.20

2.2 Spectral Graph Theory21

In this section we introduce the essential tools of Spectral Graph Theory. After establishing22

the fundamental definitions on graphs, we introduce the normalized graph Laplacian L23

acting on Rn as the analogue of ∆ on L2pr´π, πsq. The bridge between ∆ and L is the24

spectral theorem: L, like ∆, is a symmetric operator on a Hilbert space of functions on25

graphs so it has an orthogonal basis of eigenvectors. Since the complex exponentials formed26

the Fourier basis for L2pr´π, πsq, we interpret the eigenvectors of L as a Graph Fourier27

Basis for the graph G. In the second half of the section, we find that the Graph Fourier28
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Basis follows a weaker version of the Sturm Comparison Principle. Furthermore, we show1

that Corollary 2.1.4 is violated in the graph setting by providing examples of localized2

eigenfunctions. We end this chapter with a result connecting Corollary 2.1.4 and Theorem3

2.1.11 in the graph setting: the occurrence of localized eigenfunctions is equivalent to finding4

a joint Dirichlet-Neumann eigenfunction on a graph. Most definitions and theorems stated5

in this section can be found in [6] and [3]. Propositions 2.2.1, 2.3.1, and 2.3.4 are novel.6

The idea for the proofs of Theorems 2.3.3 and 2.3.2 are suggested in [6, Chapter 8] but here7

we fill in the actual details.8

Definition 2.2.1. Let n P N. A finite undirected weighted graph of n vertices is the ordered9

set G “ pV,E,wq where V “ rns :“ t1, . . . , nu and E Ď
`

rns
2

˘

. The elements of V are the10

vertices, the elements of E are the edges, and w : E ÞÑ R` is the weight function which11

assigns a non-negative real number to every edge.12

From now on, we shall assume that a graph is finite, undirected, and weighted unless13

otherwise specified. An unweighted graph G is a weighted graph where wpeq “ 1 for every14

e P E.15

Definition 2.2.2. Let G be a graph and AG P MnpRq where rAGsij “ wij ðñ i, j P E16

and 0 otherwise. Then AG is the adjacency matrix. Let TG PMn be a diagonal matrix such17

that rTGsii “ rAG1nsi. Then TG is the degree (or weight) matrix. The degree or weight of18

a vertex i is di “ rTGsii. We will drop the subscript G whenever it is clear which graph we19

are referring to.20

Definition 2.2.3. Let G be a graph and let f : V ÞÑ R. Then f is a function on a graph.21

Remark 2.2.1. Note that the space of functions on G is finite dimensional because V is22

finite. Consequently, any function f : V ÞÑ R can be represented by an element in Rn. For23

the remainder of this thesis, we will abuse notation by writing f as a function on V or as24

an element of Rn whenever convenient. This is justified because they are really the same25

thing: fpxiq is just the ith element in the vector f P Rn.26

Now we attempt to mimic the theory in Section 2.1 by finding a meaningful operator

that admits an orthogonal eigenbasis. What could this operator be? We derive it by going
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back to the example from Section 1.3 from Chapter 1. Recall that we were given a graph Γ

of the image and the problem was to detect the pixels that corresponded to the face. Let

the set of face pixels be denoted F and the set of non-face pixels be B. We assume that all

the pixels in F are close together and have similar pixel values. Recall that the edge weight

between two pixels (or vertices) i and j was

wpi, jq “ exp
´

´||xi ´ xj ||
2
2

2σx

¯

exp
´

´||pi ´ pj ||
2
2

2σp

¯

. (2.2.1)

As a consequence, we expect the edge weight between vertices in F to be large and that1

between F and B to be small. The problem of detecting face pixels could thus be reformu-2

lated as partitioning V into F and B such that the total edge weight between F and B is3

minimized. We convert this to a convex optimization problem.4

Define the total normalized edge weight between any two partitions F and B of V as the

cut:

cutpF,Bq “

ˆ

1

volpF q
`

1

volpBq

˙

ÿ

iPF,jPB

wij ,

where volpF q “
ř

iPF wi. Now consider a function f : V ÞÑ R where

fpxq “

#

1
volpF q if x P F,

´ 1
vol(B) if x P B.

Then

cutpF,Bq “
´ 1

volpF q
`

1

volpBq

¯

ÿ

iPF,jPB

wij “

ř

ijPE wijpfpiq ´ fpjqq
2

ř

iPV wipfpiqq
2

.

Note that f takes values volpF q´1 or volpBq´1 but to minimize cutpF,Bq we may consider

a “relaxation” of the above problem to all functions f on Γ such that f K T1

min
F,B

cutpF,Bq “ min
fKT1

ř

ijPE wijpfpiq ´ fpjqq
2

ř

iPV wipfpiqq
2

.

The fraction on the right is a Generalized Rayleigh quotient for a symmetric matrix L since

the numerator is a quadratic form and every quadratic form is associated with a symmetric

matrix and the numerator. Furthermore, ∇xx, Lxy “ Lx so we can recover this matrix

using the gradient of the numerator. This matrix is called the Laplacian matrix. The
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actual calculation reveals that L “ T ´A. We can bring the Generalized Rayleigh quotient

into standard form using a substitution:

min
fKT1

ř

ijPE wijpfpiq ´ fpjqq
2

ř

iPV wipfpiqq
2

“ min
fKT1

fJLf

fJTf
“ min

fKT1

fJLf

fJTf
“ min

fKT 1{21

yJLy
yJy

,

where y “ T 1{2f and L “ T´1{2LT´1{2. Incidentally, T 1{21 is actually an eigenvector of L1

so the above problem is an eigenvalue problem and the minimizer is an eigenvector.2

Definition 2.2.4. Given a (finite, unweighted, undirected) graph G “ pV,Eq and a function

u : V ÞÑ C the Combinatorial Graph Laplacian ∆G is defined as:

∆Gupxq “
ÿ

y„x

pupxq ´ upyqq.

∆G is a linear operator on the space of functions on V which, due to V ’s finitude, is

isomorphic to C|V | so it is accompanied by the Laplacian matrix L:

LG “ TG ´AG.

Again, for notational clarity, we drop the subscript G whenever the graph is undisputed.

The Normalized Laplacian [6], L is the matrix

L “ T´1{2LT´1{2 “ I ´ T´1{2AT´1{2.

The entries of L are

Li,j “

$

’

&

’

%

1{di, i “ j,

´1{
a

didj , i „ j,

0, otherwise.

Note that L slightly alters the action on a function u:

Lupxq “ 1
?
dx

ÿ

y„x

˜

upxq
?
dx
´
upyq
a

dy

¸

.

Since L is a symmetric matrix, the eigenvalues of L are characterized by the Rayleigh

quotient and the respective minimax formulations (noting that the spectral decomposition

of L is L “ V ΛV ˚q

λ0 “ min
x‰0

xx,Lxy
xx, xy

“
xx,Lxy

xT´1{2x, T´1{2xy
, (2.2.2)

λi “ min
xKSi´1

xx,Lxy
xT´1{2x, T´1{2xy

(2.2.3)

“ min
x‰0

max
gPSi´1

xx,Lxy
xpx´ gq, px´ gqy

. (2.2.4)
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Definition 2.2.5. Let G be a graph and L its Laplacian. Then L “ V ΛV ˚ where V1

is an orthogonal matrix. The Graph Fourier Basis is the set of columns of V and the2

Graph Fourier Transform is the operator V ˚. Since L “ T 1{2V ΛV ˚T 1{2, the Combinatorial3

Fourier Basis is the set of column vectors of T 1{2V . Note that the combinatorial Fourier4

Basis is NOT identical to the eigenbasis of the combinatorial Laplacian.5

Remark 2.2.2. There are several reasons why calling L the “Laplacian” is appropriate.6

One of those reasons is because Pn the cyclic graph on n vertices can be viewed as the7

discretization of an interval on n points. In this case, the second-difference matrix used for8

numerically approximating second derivatives (i.e the ∆) is equal to the Laplacian on Pn.9

Hence, the Laplacian operator is a generalized “discrete” version of the Euclidean Laplacian.10

Next, we prove a result on how many times a combinatorial Laplacian eigenfunction11

might oscillate.12

Definition 2.2.6. Let Ef “ tpxi, xjq P E | fpxiqfpxjq ď 0u be the Nodal edges of f13

and Vf “ ti P V | fi “ 0 and fjfk ă 0 for some j, k „ iu be the Nodal vertices. Then14

Nf “ Ef Y Vf is the Nodal set of f .15

Note that if all edges in a graph are nodal, then the graph is bipartite.16

Proposition 2.2.1. Let f be a Combinatorial Laplacian λ-eigenfunction. Then |Ef | ě17

Gpλq{2 where Gpλq “ |txi P V |
ř

xj„xi
wij ă λu|.18

Proof. The proof follows by reflecting on the eigenfunction formula and counting conserva-

tively. Since f is an eigenfunction we have

λfi “
ÿ

i„j

wijpfi ´ fjq “ fi
ÿ

i„j

wij ´
ÿ

i„j

wijfj .

Rearranging the above equation we have that

ÿ

i„j

wijfj “
´

ÿ

i„j

wij ´ λ
¯

fi “ Aλ,ifi.

When Aλ,i ă 0,
ř

i„j wijfj has a sign opposite to fi. Not all fj can have the same sign as19

fi so there must be at least one k „ i such that fifk ă 0 so pi, jq P Ef . We can do this20
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process for every vertex such that Aλ,i ă 0 and collect the corresponding nodal edges. Note1

that we might have double counted some edges if D i1, i2 s.t. i1 „ i2 and Aλ,i1 , Aλ,i2 ă 0.2

So the number of distinct collected edges is at least half the number of collected edges3

(this is the most conservative case when every edge is double counted). But the number4

of counted edges is equal to the number of vertices for whom Aλ,i ă 0, i.e Gpλq. Thus,5

|Ef | ě Gpλq{2.6

Remark 2.2.3. Since nodal edges connect positive vertices to negative ones, they describe7

how many times a function changes sign on the graph. Consequently Proposition 2.2.1 is8

analogous to Example 2.1.2 which establishes a lower bound on the number of times of9

Laplacian Eigenfunctions change sign on r´π, πs.10

2.3 Localization Phenomena in Combinatorial Laplacian Eigen-11

functions12

Here we work with the combinatorial Laplacian, L.13

Definition 2.3.1. Let u : V ÞÑ C such that Lu “ λu for some λ P R. Then u is localized14

if it vanishes on some neighbourhood of G. In other words, u is localized ðñ D v P15

V such that u |Npvq” 016

Example 2.3.1. The Dirichlet eigenfunctions on the graph approximations to the Sierpin-17

ski gasket exhibit localization, for example the 6-eigenfunction on the following graph:18

Figure 2.2: A Localizing 6-eigenfunction [29]. The vertices are the intersections of the
segments and the numbers represent the function value at the vertices. No number means
the value is zero.
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Example 2.3.2. The n-fan graph is the graph Fn with 2n ` 1 vertices tv0, . . . , v2nu, and1

edges tv0, viu and tv2i, v2i´1u for 1 ď i ď n. F1 is just the triangle with vertices v0, v1, and2

v2, with eigenvectors p1, 1, 1q, p0, 1,´1q, and p1, 0,´1q. It admits one 0-eigenfunction, one3

(2n` 1)-eigenfunction, n 3-eigenfunctions and n´ 1 1-eigenfunctions, adding up to 2n` 14

eigenfunctions, thus completing the spectrum. Remarkably, we have that almost all of the5

eigenvectors are localized on either one or two of the blades of the fan, so Fn is indeed a6

highly localizing graph.7

Figure 2.3: 3 and 1 eigenfunctions on the 3-fan

Example 2.3.3. The n-star graph is the graph Sn with n`1 vertices tv0, . . . , vnu and edges8

tv0, viu for 1 ď i ď n. The spectrum of Sn can be deduced easily from the techniques used for9

Fn. Consider the contraction on V pFnq where v2i and v2i´1 are contracted into one vertex.10

Then Sn ” Fn{ „ where „ represents the contraction. The eigenvectors wi are preserved11

in the contraction since each wi takes the same value on each pair of contracted vertices.12

Consequently, we get n´ 1 1-eigenfunctions for free. Furthermore, the 2n` 1 eigenfunction13

now becomes an (n`1)-eigenfunction. Combining these with the 0-eigenfunction completes14

the spectrum.15

Figure 2.4: The spectrum of the 5-star graph
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Remark 2.3.1. Note that although the eigenfunctions are localized, they are sometimes not1

orthogonal, such as the ones found in the 1-eigenspace.2

Example 2.3.4. Suppose G1 and G2 are two graphs with eigenvectors u1 and u2 corre-3

sponding to eigenvalues λ1 and λ2 respectively such that u1 vanishes at some vertex v1 and4

u2 vanishes at some vertex v2. Let H be the graph formed by gluing G1 and G2 at the5

vertices v1 and v2. Then H admits a λ1 and λ2 eigenvector: one localized on G1 and the6

other localized on G2.7

We can generalize the above observation to find a gluing decomposition for graphs with8

localization.9

Definition 2.3.2. We say that a graph G is partially labelled if DS Ď V pGq and a function10

σ : S ÞÑ N. Here σ is a labelling of the vertices.11

Definition 2.3.3. Let G and H be partially labelled graphs with labellings σG and σH .12

Note that G\H has a natural labeling σ. Let „ be the equivalence relation on V pG\Hq13

where v „ u ðñ σpvq “ σpuq. Then the gluing of G and H is the graph F – G\H{ „.14

In this case we use the notation denote F “ GH.15

Remark 2.3.2. This definition of gluing follows from [20], where the author notes that the16

operation is also associative and commutative. It is the multiplication operation in the17

gluing algebra of graphs.18

Proposition 2.3.1. Let F be a connected graph which admits a localized Laplacian λ-19

eigenvector u. Then DG,H Ď F such that F “ GH where ∆Gu |G“ λu |G.20

Proof. We partition F into a graph where u localizes and where it vanishes and show

that F is the gluing of those two graphs at vertices where u vanishes but doesn’t vanish

in their neighbourhoods. To that end define V “ tv P V pF q | u |Npvq” 0u. Setting

V pGq “
Ť

vPV Npvq, let BG :“ tv P V pGq | Du P V pGq and u1 P V pF qzV pGq s.t. v „ u, u1u.

Finally, set G to be the subgraph induced by V Y BG and H to be the subgraph induced

by Vc. Clearly, F “ GH. Furthermore, if v P VczBG then v has neither a localizing
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neighbourhood nor is it adjacent to a vertex with a localizing neighbourhood. So

∆Fupvq “
ÿ

x„v

pupvq ´ upxqq “
ÿ

x„v,xPVc
pupvq ´ upxqq “ ∆Gupvq.

Furthermore, if v P BG then

∆Fupvq “
ÿ

x„v

pupvq ´ upxqq

“
ÿ

x„v,xPV
pupvq ´ upxqq `

ÿ

x„v,xPVc
pupvq ´ upxqq

“
ÿ

x„v,xPVc
pupvq ´ upxqq

“ ∆Gupvq.

Thus, ∆Gupvq “ λupvq for every v P G.1

Remark 2.3.3. First observe that BG is a vertex cut for F . Secondly, the above proposition2

can be interpreted in terms of the joint Dirichlet-Neumann spectrum of F because u is3

actually a joint Dirichlet-Neumann λ-eigenfunction on the subgraph induced by VczBG4

with boundary BG. The terminology is borrowed from [6, Chapter 8].5

2.3.1 Neumann and Dirichlet Spectra of Subgraphs6

In this section we recap [6, Chapter 8]. Note that we now work with the normalized Lapla-7

cian but the techniques can be generalized to the combinatorial, or indeed any, Laplacian8

form on graphs.9

Definition 2.3.4. Let G be a finite graph and S Ď V pGq. Then the boundary vertices of10

S, denoted δS, are the vertices of G which are not in S but adjacent to some vertex in S.11

Furthermore, the boundary edges of S, denoted BS are the edges which connect boundary12

vertices to S. Thus δS “ tv P V pSqc | v „ u for some u P V pSqu and BS “ te P EpGq |13

e “ px, yq such that x P V pSq, y P δSu. We also denote the union of the edges of S and its14

boundary edges as S˚. Of course, S may not have any boundary edges or any boundary15

vertices.16
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Definition 2.3.5. Let S Ď G. Then the Neumann eigenfunction fN1 and Neumann eigenvalue

λN1 of S are defined as follows:

λN1 “ min
fK1

ř

px,yqPS˚pfpxq ´ fpyqq
2

ř

xPV pSqpfpxqq
2dx

, fN1 “ argmin
fK1

ř

px,yqPS˚pfpxq ´ fpyqq
2

ř

xPV pSqpfpxqq
2dx

.

In general, given the subspace of the first i´ 1 Neumann eigenfunctions denoted Ni´1, the

ith Neumann eigenfunction and eigenvalue are defined as follows:

λNi “ min
fKNi´1

ř

px,yqPS˚pfpxq ´ fpyqq
2

ř

xPV pSqpfpxqq
2dx

, fNi “ argmin
fKNi´1

ř

px,yqPS˚pfpxq ´ fpyqq
2

ř

xPV pSqpfpxqq
2dx

.

Definition 2.3.6. Let S Ď G. Then the Dirichlet eigenfunction fD1 and Dirichlet eigenvalue

λD1 of S are defined as follows:

λD1 “ min
f |δS”0

ř

px,yqPS˚pfpxq ´ fpyqq
2

ř

xPV pSqpfpxqq
2dx

, fD1 “ argmin
f |δS”0

ř

px,yqPS˚pfpxq ´ fpyqq
2

ř

xPV pSqpfpxqq
2dx

.

(2.3.1)

In general, given the subspace of the first i´ 1 Dirichlet eigenfunctions denoted Di´1, the

ith Dirichlet eigenfunction and eigenvalue are defined as follows:

λDi “ min
fKDi´1

ř

px,yqPS˚pfpxq ´ fpyqq
2

ř

xPV pSqpfpxqq
2dx

, fDi “ argmin
fKDi´1

ř

px,yqPS˚pfpxq ´ fpyqq
2

ř

xPV pSqpfpxqq
2dx

.

(2.3.2)

Remark 2.3.4. Note that these definitions directly replicate the minimax equations 2.2.2.1

However, the quotients found in equations 2.3.1 and 2.3.2 are not always the Rayleigh2

quotients of the restriction of the normalized Laplacian to S. For the Neumann case we3

find that the eigenvalues λNi are the Rayleigh quotients of another symmetric operator given4

in [6, p. 125].5

While we explicitly choose Dirichlet eigenfunctions to have vanishing boundary condi-6

tions, the definition for Neumann eigenfunctions does not a priori assert a vanishing normal7

derivative condition. The following two results prove that Neumann and Dirichlet eigen-8

functions behave as we expect them to: that is, they mimic the properties of the Neumann9

and Dirichlet conditions on Euclidean domains with smooth boundaries.10

Theorem 2.3.2. Let V pSq Ď V pGq and S the induced graph. The Neumann eigenfunction11

f “ fN1 satisfies the following properties:12
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1. Fix x P V pSq. Then
ÿ

px,yqPS˚

pfpxq ´ fpyqq “ λ1
Ndxfpxq. (2.3.3)

2. Fix x P δS. Then
ÿ

px,yqPBS

pfpxq ´ fpyqq “ 0. (2.3.4)

3. Let h : V pSq Y δS ÞÑ R. Then

ÿ

xPV pSq

hpxqLSYδSfpxq “
ÿ

px,yqPS˚

phpxq ´ hpyqqpfpxq ´ fpyqq. (2.3.5)

Proof. We prove parts (1) and (2) variationally. For part (1), fix x0 P V pSq and let

fεpxq “

#

fpx0q `
ε
dx0

if x “ x0,

fpxq ´ ε
volpSq´dx0

.

First observe that fε |SK T1S so the minimization problem is well-defined on fε. Now we

compute the quotient for fε:

Rpεq “

ř

px,yqPS˚
pfεpxq ´ fεpyqq

2

ř

xPV pSq

pfεpxqq2dx

“

ř

px,yqPS˚,x‰x0

pfpxq ´ fpyqq2 `
ř

px0,yqPS˚
pfpxq ` ε

dx0
´ fpyq ` ε

volpSq´dx0
qq2

ř

x‰x0

pfpxq ´ ε
volpSq´dx0

q2dx0 ` pfpx0q `
ε
dx0
q2dx0

“

ř

px,yqPS˚
pfpxq ´ fpyqq2 ` 2εvolpSq

dx0 pvolpSq´dx0 q

ř

px0,yqPS˚
pfpx0q ´ fpyqq `Opε

2q

ř

xPV pSq

pfpxqq2dx `
2εfpx0qdx0volpSq

dx0 pvolpSq´dx0 q
`Opε2q

.

The second equality follows after simplifying the algebra and noting that
ř

xPV pSq

fpxqdx “ 0.

We know that when ε “ 0, fε “ f , which also minimizes Rpεq. Thus, R1p0q “ 0 so computing

the derivative via the quotient rule and setting the numerator at ε “ 0 to zero, we get that

´ 2volpSq

dx0pvolpSq ´ dx0q

ÿ

px0,yqPS˚

pfpx0q ´ fpyqq
¯

ÿ

xPV pSq

pfpxqq2dx

´

´ 2fpx0qdx0volpSq

dx0pvolpSq ´ dx0q

¯

ÿ

px,yqPS˚

pfpxq ´ fpyqq2 “ 0.
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Rearranging the equation, dividing through by
ř

xPV pSq

pfpxqq2dx and noting that

ř

px,yqPS˚
pfpxq ´ fpyqq2

ř

xPV pSq

pfpxqq2dx
“ λN1

gives us part (1). For part (2), we adopt a similar strategy but the variation is simpler.

Fix x0 P δS and set

fεpxq “

#

fpxq ` ε if x “ x0,

fpxq otherwise.

Now compute the Neumann quotient and observe that we can separate the sum in the

numerator over edges that connect to x0 and those that don’t. By definition, the edges that

connect with x0 are contained in BS so

Rpεq “

ř

px,yqPS˚
pfεpxq ´ fεpyqq

2

ř

xPV pSq

pfεpxqq2dx

“

ř

px,yqPS˚
pfpxq ´ fpyqq2 ` 2ε

ř

px0,yqPBS

pfpx0q ´ fpyqq `Opε
2q

ř

xPV pSq

pfpxqq2dx
.

Once again, taking the derivative with respect to ε and setting it 0 at ε “ 0 yields (2).

Lastly, (3) is a consequence of (2) because

ÿ

xPV pSq

hpxqLSYδSfpxq “
ÿ

xPV pSq

hpxq
ÿ

px,yqPS˚

pfpxq ´ fpyqq

“
ÿ

xPV pSq

hpxq
ÿ

px,yqPS˚

pfpxq ´ fpyqq `
ÿ

yPδS

hpyq
ÿ

x„y
xPV pSq

pfpyq ´ fpxqq.

If we observe the contribution of each edge px, yq to the above sum we observe that the

vertices get counted exactly twice, with the sum over the edge being

hpxqpfpxq ´ fpyqq ` hpyqpfpxq ´ fpyqq “ phpxq ´ hpyqqpfpxq ´ fpyqq.

This completes the argument.1

An analogous result holds for Dirichlet eigenfunctions.2
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Theorem 2.3.3. Let V pSq Ď V pGq and S the induced graph. The Dirichlet eigenfunction1

f “ fD1 satisfies the following properties:2

1. Fix x P V pSq. Then
ÿ

px,yqPS˚

pfpxq ´ fpyqq “ λ1
Ndxfpxq. (2.3.6)

2. Let h : V pSq Y δS ÞÑ R and hpxq “ 0 for every x P δS. Then

ÿ

xPV pSq

hpxqLSYδSfpxq “
ÿ

px,yqPS˚

phpxq ´ hpyqqpfpxq ´ fpyqq. (2.3.7)

Proof. We get to use simpler variations as the constraint on the minimization problem is

different. For part (1), we fix x0 P S and use the following variation:

fεpxq “

#

fpxq ` ε if x “ x0,

fpxq otherwise.
(2.3.8)

fε satisfies the vanishing boundary condition so we can compute the given Dirichlet quotient

and then apply the same method as the proof for part (1) of Theorem 2.3.2. For part (2),

notice that

ÿ

xPV pSq

hpxqLSfpxq ´
ÿ

px,yqPS˚

phpxq ´ hpyqqpfpxq ´ fpyqq

“
ÿ

px,yqPBS
yPδS

hpyqpfpxq ´ fpyqq “ 0.

Remark 2.3.5. The differences between Theorems 2.3.2 and 2.3.3 are subtle but important.3

The first important difference is that while for the Neumann result the bilinear form in part4

(3) is true for any function h while the one in part (2) of the Dirichlet theorem is true only5

for functions h vanishing on δS. Secondly, the proof for the Neumann condition involves6

perturbing f on the boundary; as a consequence, we cannot use the same technique for the7

Dirichlet eigenfunctions, which are fixed at 0 on δS. Lastly, both Dirichlet and Neumann8

functions satisfy the eigenvalue equation for LSYδS on S. This does not mean that they are9

Laplacian eigenfunctions on S Y δS.10

Although the function f in Equations 2.3.1 and 2.3.2 does not satisfy an eigenvalue

equation, the function g “ T 1{2f on S does. Additionally, the vanishing normal derivative
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condition 2.3.4 changes to

1
a

d1x

ÿ

px,yqPBS
yPS

gpxq
a

d1x
´
gpyq
a

dy
“ 0. (2.3.9)

As a consequence g is an true eigenfunction of the normalized Laplacian with boundary1

conditions. Here we suggest an alternative formulation of these boundary problems in the2

language of operators. For the following definitions, assume S Ď G3

Definition 2.3.7. The Dirichlet Operator (resp. Normalized Dirichlet Operator), DS (resp.4

DS) is the restriction of LG (resp LG to the rows and columns of S).5

Definition 2.3.8. The boundary matrix B is a |δS| ˆ |S| matrix where Bij is 1 if the ith6

boundary vertex is connected to the jth vertex in S.7

Definition 2.3.9. The boundary degree matrix is the diagonal matrix δTS where the ith8

diagonal entry is the degree of the ith boundary point into S.9

Definition 2.3.10. The Neumann Operator (resp. Normalized Neumann Operator), NS

(resp. NS) are the following operators on the space of functions f : S ÞÑ R:

NS “ DS ´B
JpδTSq

´1B,

NS “ T
´1{2
S NT

´1{2
S .

Remark 2.3.6. If f satisfies the Dirichlet condition on the boundary of S then taking the

Laplacian on any vertex of S we get that

∆Gfpxq “ dxfpxq ´
ÿ

yPSYδS

fpyq “ dxfpxq ´
ÿ

yPS

fpyq. (2.3.10)

As a consequence, we can represent the action of the Laplacian on S on a function with

Dirichlet conditions by a matrix equal to the rows and columns of LG indexed by S. The

Neumann situation is a bit more complicated. Suppose f satisfies the Neumann condition

on the boundary. Then equation 2.3.10 still holds but the boundary terms are not zero.

Instead, if y P δS then from the Neumann condition we have that fpyq “ p1{d1yq
ř

z„y fpzq.

We can substitute this back into equation 2.3.10 and get that

∆Gfpxq “ dxfpxq ´
ÿ

yPSYδS

fpyq “ dxfpxq ´
ÿ

yPS
y„x

fpyq

loooooooooomoooooooooon

Represented by D

´
ÿ

yPδS
y„x

1

d1y

ÿ

z„y
zPS

fpzq

loooooooomoooooooon

Represented by BJpδTSq
´1B

.
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Proposition 2.3.4. Let S Ď V pGq, δS the induced boundary, BS the boundary edges, and1

S˚ “ BS Y EpSq. Furthermore, suppose u is a joint Dirichlet-Neumann eigenfunction on2

S. Then u can be extended to G such that u is localized on S.3

Proof. Letting u “ 0 on pV pSq Y δSqc, we see that when x P pV pSq Y δSqc,

∆Gupxq “
ÿ

x„y

pupxq ´ upyqq “ 0.

because y can only be in δS (if it was in S then x would be in either δS or V pSq).4

If x P δS then

∆Gupxq “
ÿ

x„y

pupxq ´ upyqq

“
ÿ

x„y,yPV pSq

pupxq ´ upyqq

loooooooooooooomoooooooooooooon

“0 because of the Neumann condition

`
ÿ

x„y,yPpV pSqYδSqc

pupxq ´ upyqq

loooooooooooooooooomoooooooooooooooooon

“0 due to Dirichlet + Extension conditions

`
ÿ

x„y,yPδS

pupxq ´ upyqq

loooooooooooomoooooooooooon

“0 because of the Dirichlet condition

“ 0.

Finally, if x P V pSq then ∆Gupxq “ λupxq because u is a Dirichlet (or Neumann) eigenfunc-5

tion.6

To end this chapter, we propose two open problems motivated by Remark 2.3.3, Propo-7

sition 2.3.1, and Proposition and 2.3.4:8

Question 2.3.5. Suppose G admits a localized eigenvector f . Is the cut induced by f9

minimal?10

Question 2.3.6. Which graphs G admit localized eigenvectors? Equivalently which graphs11

G admit a subgraph S such that S has a joint Dirichlet-Neumann eigenvector?12

One approach to answering Question 2.3.6 is to notice that the problem is equivalent13

to asking when the kernel of BJpδTSq
´1B contains a Dirichlet eigenvector. The approach14

would be to deduce structural properties on S from the fact that BJpδTSq
´1B contains an15

eigenvector of DS . Using this strategy, we can figure out some necessary conditions but the16

ones found by the author thus far are not sufficient.17

39



Chapter 31

Diffusion Maps2

In this chapter we discuss Diffusion Maps pioneered in [7, 8, 4] as a multiresolution frame-3

work for graphs. In [8], Coifman et al. proposed Diffusion Maps as a construction that4

generalizes the kernel methods found in machine learning. In 2012, Allard, Chen, and5

Maggioni [1] proposed a geometric multi-resolution analysis on graphs using tree decompo-6

sitions and diffusion maps. These ideas merit an undergraduate thesis of their own; here7

we discuss Laplacian Eigenmaps pioneered by Belkin and Niyogi in 2003 as they were es-8

sential precursors to the ideas in [8]. As a preliminary remark we note that unlike the9

Fourier basis, Diffusion Maps are not typically used for decomposing signals. Instead, they10

resemble multiresolution analyses qualitatively because their properties enable detecting11

finer and coarser structures within graphs. These properties make them ideal for studying12

low-dimensional structures in high-dimensional data. This chapter is more experimental13

than the previous one. In the first section, we set up Belkin and Niyogi’s construction and14

in the second section we show three examples to Graph Drawing, Manifold Identification,15

and Image resolution. In the third section, we provide a novel construction called Neumann16

maps by applying the process in Section 3.1 to the Neumann operator in 2.3.10. We end17

the thesis with some examples of Neumann maps which suggest that these are indeed worth18

studying.19
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3.1 Diffusion maps on graphs1

Let G be a weighted, undirected, and finite graph. Consider a random walk on G where

P pXptq “ j | Xpt´ 1q “ iq “
wij
di
.

In other words, the property of jumping to vertex j from vertex i equals the relative weight

of the ijth edge with respect to the total weight on the vertex i. The Law of total probability

gives the probability of being at vertex j at time t:

P pXptq “ jq “
ÿ

i

P pXptq “ j | Xpt´ 1q “ iqP pXpt´ 1q “ iq “M rj, :sXpt´ 1q,

where M rj, :s “ rP pXptq “ j | Xpt ´ 1q “ 1q . . . P pXptq “ j | Xpt ´ 1q “ nqs. Let’s

make a matrix of these suggestively labelled row vectors, called M , where the jth row of

M is M rj, :s. This is termed the probability transition matrix. Note that M t gives us the

probability transition at time t. Furthermore, observe that

M “ AT´1,

where T is the degree matrix, W is the weight matrix. M isn’t a symmetric matrix, but it

is similar to one:

S “ T´1{2MT 1{2 “ T´1{2WT´1{2 “ I ´ L. (3.1.1)

We can write M in terms of the spectral decomposition of I´L “ V ΛV ´1 where Λ “ I´Ω

where Ω is the diagonal matrix of Normalized Laplacian eigenvalues and V is the Fourier

Basis matrix.

M “ T 1{2ST´1{2 “ T 1{2V ΛV ´1T´1{2 “ pT 1{2V qΛpT 1{2V q´1 “ ΦΛΦ´1 “ ΦΛΨJ.

Here Φ “ rϕ1, . . . , ϕns and Ψ “ rψ1, . . . , ψns so ΨJ “ rψJ1 , . . . , ψ
J
n s
J.We may further expand

M in terms of ϕi and ψi in the following way:

M “ ΦΛΨJ “ rϕ1, . . . , ϕnsΛrψ
J
1 , . . . , ψ

J
n s
J “

n
ÿ

i“1

λiϕiψ
J
i .

Since we let Mij “ wij{dj, each column of M is the probability vector of walking from the

jth vector to anywhere in the graph in 1 step. Similarly, jth column of M t denotes the
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probability of walking from j at time t. So we may write the jth column of M t as follows:

M tr:, js “
n
ÿ

i“1

λtiϕiψ
J
i pjq.

Note that ϕi form a basis for Rn so we can write the coordinate vector for M tr:, js in that

basis:

ξtpjq “

»

—

—

—

–

λt1ψ
J
1 pjq

λt2ψ
J
2 pjq
...

λtnψ
J
n pjq

fi

ffi

ffi

ffi

fl

.

Finally, observe that the first component is redundant because the first eigenvalue is always1

0. We have thus found an embedding of every vertex in pn´ 1q-dimensional space. This is2

called a diffusion map:3

Definition 3.1.1 (Diffusion Maps). Let G be a weighted undirected graph. The Diffu-

sion Map of G at time t is the function ξt : V pGq ÞÑ Rn´1 where

ξtpjq “

»

—

–

λt2ψ
J
2 pjq
...

λtnψ
J
n pjq

fi

ffi

fl

.

Definition 3.1.2 (d-dimensional Diffusion Map). Given a diffusion map ξt, the d-

dimensional diffusion map is given by its projection on the subspace generated by the first

d basis vectors:

ξ
pdq
t pjq “

»

—

–

λt2ψ
J
2 pjq
...

λtnψ
J
d pjq

fi

ffi

fl

.

Remark 3.1.1. The diffusion map is a continuous map with respect to the time parameter t.4

Furthermore, the Euclidean distance between two diffusion map points gives us the weighted5

difference between the distribution when starting from vertex i2 and the distribution when6

starting from vertex i2.7

Theorem 3.1.1.
řn
j“1pP pXptq “ j | Xp0q “ i1q ´ P pXptq “ j | Xp0q “ i2qq

2 1
dj
“8

||ξtpi1q ´ ξtpi2q||.9
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Proof. We express the left hand side in matrix form and then compute:

n
ÿ

j“1

pP pXptq “ j | Xp0q “ i1q ´ P pXptq “ j | Xp0q “ i2qq
2 1

dj

“ pM tχi1 ´M
tχi2q

JT´1pM tχi1 ´M
tχi2q

“ pM tpχi1 ´ χi2qq
JT´1pM tpχi1 ´ χi2qq

“ pχi1 ´ χi2q
JpM tqJT´1M tpχi1 ´ χi2q

“ pχi1 ´ χi2q
JpΦΛtΨJqJT´1ΦΛtΨJpχi1 ´ χi2q

“ pχi1 ´ χi2q
JΨΛtΦJT´1ΦΛtΨJpχi1 ´ χi2q

“ pχi1 ´ χi2q
JΨΛtV JT 1{2T´1T 1{2V J

looooooooooomooooooooooon

I

ΛtΨJpχi1 ´ χi2q

“ pΛtΨJpχi1 ´ χi2q
JqJΛtΨJpχi1 ´ χi2q

“ ||ξtpi1q ´ ξtpi2q||
2.

3.2 Applications of Diffusion Maps1

By associating vertex j with the point ξ
pdq
t pjq in Rd a diffusion map embeds the original graph2

G in a d-dimensional space. We term this a diffusion embedding. Furthermore, Theorem3

3.1.1 demonstrates that the Euclidean distance between two points in the embedding is4

equal to their proximity in the random walk. This has major implications on the shape of5

the Diffusion Embedding because two vertices (or points) are placed close to each other if6

their edge-wise weights are large. Similarly, we may form a graph from any finite set of7

points using a known notion of pairwise affinity. For instance, we can associate a graph to8

an image where the affinity between two pixels is given by Equation 2.2.1. The Diffusion9

Map will then “draw” that set as a Diffusion Embedding. As such, a Diffusion Map is a10

local to global algorithm: it takes local information and gives a global drawing. This has11

several applications and here we highlight three in particular.12

3.2.1 Graph Drawing13

A diffusion embedding is a drawing of a graph in Rd. How intuitive or useful is this drawing?14

The following result shows that the 2-dimensional diffusion embedding of a circulant graph15
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is the circular embedding in the plane, which is how we would intuitively draw a circulant1

graph (a graph whose adjacency matrix is circulant).2

Figure 3.1: Left: The adjacency matrix of a 20-regular circulant graph on 100 vertices.
Right: tξ1

2pjqu1ďjď100. Note that we purposely represent the adjacency matrix in jumbled
form (the rows are placed randomly instead of in the order where the matrix is circulant)
to emphasize that the diffusion embedding

Proposition 3.2.1. Let G be a circulant graph. Then the 2-dimensional diffusion maps3

tξ
p2q
t piqu lie on a circle in R2.4

Proof. Since G is circulant, it is k-regular and L is circulant and symmetric. Consequently,

T 1{2 “
?
kI and the eigenvectors are ym “ sin p2πmj{nq and xm “ cos p2πmj{nq where

0 ď m ď tn{2u with xm and ym corresponding to the same eigenvalue. Then the 2nd and

3rd eigenvectors correspond to m “ 1 with eigenvalue λ:

ψJ2 “
?
krcos p2π0{nq, . . . , cos p2πpn´ 1q{nqs,

ψJ3 “
?
krsin p2π0{nq, . . . , sin p2πpn´ 1q{nqs.

Consequently, ξ
p2q
t pjq “

?
krλt cos p2πj{nqλt sin p2πj{nqsJ so the diffusion maps lie on a5

circle of radius
?
kλt centered at the origin.6

3.2.2 Identifying Manifolds7

A set of points (also referred to as a pointcloud) X “ txiu1ďiďN Ă Rn can be associated8

with a graph G on N vertices where each vertex represents xi and wij “ exp
´||xi´xj ||

2

σ for9

some positive σ. Then tξtdpjqu1ďjďN is another pointcloud of size N but is located in Rd.10
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This is especially useful when d is much smaller than n because the diffusion embedding can1

extract features out of pointclouds which might be situated in high-dimensional Euclidean2

space but require a small number of parameters to describe (eg.: Points sampled from a3

circle in R100 have 100 components but are all described by one parameter: angle with the4

center). As a trivial example, if we sample points from a torus, the diffusion embedding is5

a torus.

Figure 3.2: Left: A pointcloud sampled uniformly from a torus. Right: The 3-dimensional
diffusion embedding of the graph associated with the pointcloud is a torus

6

3.2.3 A Simple Multiresolution Framework7

The dimension d and scale t of ξt
pdq provide a natural time-space resolution of the graph.8

This can be implemented to detect submanifolds within an image.9

Figure 3.3: We compute the diffusion embedding of ΓI , the graph associated with the image
of a circle on a plain background. We compute {ξtduford=3, t=1.
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At first glance, Figure 3.3 seems to be a redundant redrawing of the original image. But1

note that the diffusion map did not require co-ordinates at all: it was able to find them on2

its own! More pertinently, the first two components of ξ
p3q
1 form a lattice, which is exactly3

the geometry we use to embed the graph of an image. Furthermore, the third component4

was used in “resolving” the submanifold within the graph. Thus, in the first two dimensions5

the diffusion map resolved the ambient manifold and used the third dimension to resolve6

the submanifold.7

Figure 3.4: Effect of scale on the Diffusion Embedding

From Figure 3.4 we see that scales are rudimentary in this case as higher scales do not8

necessarily yield more novel representations. In this way, the Diffusion map is similar to the9

Littlewood-Paley form of the Fourier series in the sense that it has one important parameter10

which it uses to globally resolve the image. However, we know that sometimes localized11

frameworks (such as the Haar Wavelet) can prove particularly useful in detecting features12

in specific regions of the image. In the next section, we propose an idea for such an adaptive13

Diffusion framework.14

3.3 Neumann Maps15

To construct a localized framework, we understand a subgraph as a subdomain within a16

graph. We may treat the subgraph S as a graph in itself but doing so might erase important17
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information from the ambient graph via the boundary δS. The goal is to then find a suitable1

construction of a Diffusion Map which takes boundary information into account. In the2

previous section we saw that all we need for a diffusion map is a random walk which can3

be “symmetrized” via something like equation 3.1.1. Conversely, we can take a symmetric4

operator and then reverse the symmetrization process to form a right or left stochastic5

matrix. To do so, we turn to the Normalized Neumann operator N . We suppose that our6

random walk matrix R is similar to the identity minus Normalized Neumann operator, that7

is I ´N „ R. From equation 3.1.1 we have that M “ T 1{2pI ´ LqT´1{2. Analogously, set8

R “ T
´1{2
S pI ´N qT 1{2

S . The following proposition proves that RJ is row stochastic so we9

were justified in the choice of operator.10

Proposition 3.3.1. Let R “ T
1{2
S pI ´N qT´1{2

S . Then RJ1 “ 1 and the entries of R are11

all non-negative.12

Proof. This follows because the Neumann matrix admits T 1{21 as a zero-eigenvector:

RJ1 “ T
´1{2
S pI ´N qT 1{2

S “ I1´ T
´1{2
S NT 1{2

S 1 “ I1 “ I1 “ 1.

To see the non-negativity of the entries, we expand N in terms of the Dirichlet and Boundary

operators:

RJ “ T
´1{2
S pI ´N qT 1{2

S

“ I ´ T
´1{2
S NT 1{2

S

“ I ´ T
´1{2
S pL∫ ´ T

´1{2
S BJpδTSq

´1BT
´1{2
S qT

1{2
S

“ I ´ T
´1{2
S LST 1{2

S ` T´1
S BJpδTSq

´1B

“MJ
S ` T

´1
S BJpδTSq

´1B.

Here MJ
S represents the rows and columns of MJ indexed by S. Since M is a left stochastic13

matrix its entries are non-negative. Furthermore, the entries of T´1
S BJpδTSq

´1B are also14

non-negative so R is indeed column stochastic.15

Remark 3.3.1. The matrix R is the transition matrix of the reflecting random walk men-16

tioned in [6]. The reflecting walk proceeds as follows: if u P S then the probability of17
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walking to any neighbour of u is p1{duq. If x P δS such that x „ u then the walk proceeds1

to a neighbour y „ x where y P S with probability p1{dud
1
xq. As a consequence, there is a2

non-zero probability of remaining stationary because there is a chance that the walk could3

reflect off the boundary back onto the original vertex.4

We mimic the construction in Section 3.1 to define Neumann diffusions.5

Definition 3.3.1. Let R be the reflecting walk matrix where R “ pT
1{2
S W qΣpT

1{2
S W q´1 “6

CΣBJ. Then the Neumann diffusion map of vertex i P S is the following point in R|S|´1:7

gtpiq “

»

—

–

s2b
J
1 piq
...

snb
J
n piq

fi

ffi

fl

.

Similarly, the d-dimensional Neumann diffusion map is the projection of gtpiq to the8

standard d-dimensional subspace of R|S|´1:9

g
pdq
t piq “

»

—

–

s2b
J
1 piq
...

sdb
J
d piq

fi

ffi

fl

.

Here si are the eigenvalues of R contained in the diagonal matrix Σ and W are the10

Neumann eigenvectors. Note that si “ 1´ ρi where ρi is the ith Neumann eigenvalue.11

Let QpXptq “ i | Xp0q “ jq be the probability of walking to vertex i through a reflecting12

random walk after starting at vertex j. Then the analogue of Theorem 3.1.1 holds:13

Theorem 3.3.2.
ř|S|
j“1pQpXptq “ j | Xp0q “ i1q ´ QpXptq “ j | Xp0q “ i2qq

2 1
dj
“14

||gtpi1q ´ gtpi2q||.15

Figures 3.5a and 3.5b provide experimental evidence for why Neumann maps might be16

more refined tools for resolving submanifolds. The most compelling example is given by17

Figure 3.5b where a 3 dimensional Diffusion Embedding of a polar cap as a subset of a18

sphere is a helix; whereas the Neumann map intelligently embeds it as a surface instead.19

We would think that the Neumann embedding is more intuitive since the sub-point cloud20

comes from a surface and not a curve. In fact the 2-D Neumann map resolves the cap21
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as a disk (which is resolved by two parameters) while the Diffusion map requires at least1

3 dimensions to resolve the two-parameter dependence of the pointcloud. This is because2

the reflecting random walk “informs” the embedding of the ambient manifold while the3

standard random walk does not contain that information.

(a) Neumann and Diffusion embeddings of a as a subgraph of a circle and a spiral with two twists
as a subgraph of a spiral with three

(b) Neumann and Diffusion embeddings of a polar cap as a subset of a sphere

Figure 3.5: Comparing Neumann and Diffusion Embeddings for subgraphs three graphs:
Cycle, Spiral, and Sphere

4
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Chapter 41

Conclusion2

We take a moment to briefly reflect on what has conspired in the previous 72 pages. In3

Chapter 1 we demonstrated through Haar’s example that MRAs form the natural setting4

to encode the three properties of completeness, resolution, and localization important in5

image processing. In Chapter 2 we revisited these properties in the Fourier basis on r´π, πs6

and demonstrated that they emerge as consequences of the spectral and regularity theory of7

Laplacian eigenfunctions. This motivated the use of the eigenbasis of the graph Laplacian as8

a Graph Fourier basis (GFB). Proposition 2.2.1 showed that the GFB in the combinatorial9

case shows suitable resolution by obeying a weak version of the Sturm comparison principle.10

Furthermore the discussion in Section 2.3 demonstrated that the GFB can sometimes exhibit11

localization; propositions 2.3.1 and 2.3.4 showed that this phenomenon is equivalent to the12

existence of joint Dirichlet-Neumann spectra. Finally, in Chapter 3 we provided a peek13

into the intersections of harmonic analysis with high-dimensional data by engaging in an14

experimental discussion on the applications of diffusion maps as multi-scale frameworks that15

resolved finer and coarser structures within datasets and images. Observing that Diffusion16

Maps were a non-local framework, Neumann maps were proposed to embed subdomains of17

datasets. We concluded with an example which suggested that Neumann maps were more18

appropriate as an adaptive framework than Diffusion Maps on subdomains because they19

seemed to encode the ambient manifold in their embeddings.20
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Appendix2

5.1 Background to Chapter 23

Here we provide some intuition behind the mysterious propositions in Section 2.1. Note4

that proving most of these results from scratch takes a quantity of work that is significantly5

out of the scope of the thesis (even the dreaded Appendix!). As a consequence, the focus6

will be kept on techniques. First, the essential lemma of all PDE.7

Lemma 5.1.1 (Du Bois-Reymond lemma). Let h : Ω ÞÑ R be measurable such that8

ż

Ω
hϕdx “ 0

for every ϕ P C8c . Then h “ 0 almost everywhere.9

Proof. Since th ą 0u and th ă 0u are measurable, assume that one of them has positive10

measure. Without loss of generality set E “ th ą 0u and assume first that E is bounded.11

Then D compact K and open V such that K Ă E Ă V and K has positive measure. From12

Urysohn’s lemma, we find a compactly supported function ϕ which is strictly positive on13

K. Then integrating h against that function produces a contradiction.14

As a corollary we have Proposition 2.1.2:15

Corollary. Let u P C2 be a Dirichlet (resp. Neumann) eigenfunction. Then u is a weak16

Dirichlet (resp. Neumann) eigenfunction.17

Proof. Integration by parts and the Dubois-Reymond lemma.18
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Next, the intuition behind weak derivatives. The following theorem shows that ∇u is1

a weak derivative if and only if the finite differences ∆hu “ upx ` hq ´ upxq are linearly2

approximated in the Lp sense by ∇u as hÑ 0.3

Theorem 5.1.2. Let u P LppΩq where 1 ă p ă 8. Then u P W 1,p ðñ ||∆hf ||LppΩhq “4

|h|||∇f ||LppΩq where ∆hf “ fpx`hq´ fpxq and Ωh “ tx P Ω | rx, x`hs P Ωu and rx, x`hs5

is the geodesic joining x and x` h.6

Proof. Here we only prove sufficiency. To see necessity, refer to [13]. Let h “ ηt where7

η P Sn´1. Then8

|∆hf | “ |fpx` ηtq ´ fpxq| “

ż t

0
∇fpx` ηsq ds ď t1´1{p

´

ż t

0
|∇fpx` ηsq|p ds

¯1{p

Now take the pth power and integrate to get

||∆hf ||LppΩhq ď tp´1

ż

Ωh

ż t

0
|∇fpx` ηsq|p ds dx

ď tp´1

ż t

0

ż

Ωh

|∇fpxq|p dx ds “ tp||∇f ||LppΩq

9

The next result provides intuition behind why weak derivatives can be used to prove10

regularity.11

Lemma 5.1.3. Let u P H1
0 pΩq and supppuq Ď K where K is compact. Furthermore, let

f P L2pΩq such that

ż

Ω
∇u ¨∇v dx “

ż

Ω
fv dx for every v P H1

0

Then u P H2pΩq12

Proof. The strategy is to explicitly calculate the weak derivative using finite differences and

show that it is Ophq. To that end let Dhu “ upx`hq´upxq. Now we use the fact that u is

compactly supported by observing that DK 1 compact such that K Ď intpKq and K`h Ď K 1
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for small enough h P Rn such that for any v P H1
0 , vpx ´ hq P H1

0 . Then we can integrate

upx` hq against v P H1
0 by pullback:

ż

Ω
∇upx` hq ¨∇v dx “

ż

K
∇upx` hq ¨∇v dx

“

ż

K`h
∇upxq ¨∇vpx´ hq dx

“

ż

Ω
∇upxq ¨∇vpx´ hq dx

“

ż

Ω
fvpx´ hq dx

As a consequence we have that

ż

Ω
∇Dhu ¨∇v “

ż

Ω
fD´hv dx

. Using the Cauchy-Schwartz inequality and the proof in Theorem 5.1.2 we have that1

ˇ

ˇ

ˇ

ż

Ω
∇Dhu ¨∇v dx

ˇ

ˇ

ˇ
ď ||f ||2||D´hv||2 ď |h|||f ||2||∇v||2 “ Ophq

Now in the above equation set v “ Dhu. Then we have that ||∇Dhu||2 ď |h|||f ||2. In

particular, we have that

||DteiBiu||2 “ Ophq

so from Theorem 5.1.2 Biu is H1 for any i so u P H2.2

We also state the Sobolev Inequalities which provide a bridge between the weak and3

strong formulations:4

Theorem 5.1.4 (Gagliardo-Nirenberg-Sobolev Inequalities). Let u PW 1,p
0 pΩq. Then

the following inequalities hold:

||u||q ď Cpn, pq||∇u||p, 1 ď q ă
np

n´ p
, (5.1.1)

sup
Ω
|u| ď Cpn, p,Ωq||∇u||p, p ą n. (5.1.2)

The GNS inequalities show that one can bound the norm of a function in W 1,p
0 pΩq if one5

knows that the norm of its derivative is finite. By the uniformity of the constant in Equation6
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5.1.1 we have thatW 1,p
0 Ď Lq. This result is known as the Sobolev Embedding Theorem.1

Furthermore, if the degree of control on the derivative is larger than the dimension, then2

the function must be continuous with an explicit bound on the sup norm.3

Lastly, we provide a way to connect analyticity with weak derivatives:4

Lemma 5.1.5. Let f : Ω ÞÑ R and suppose for every y there exists r, δ ą 0 and M ă 8

such that for every x P Brpyq the following estimate holds

||f ||Ck ďM
k!

δk

Then f is analytic5

Proof. The proof follows by converting the multivariable function to a single variable func-

tion and then computing the Taylor series of the single variable function. To that end

fix y P Ω and let δ,M, r be as given in the statement. Without losing generality sup-

pose y “ 0. Let x P Brpyq and set gptq “ fpxtq. Now observe that via the chain rule

gpkqpxq “ px1B1 ` . . . xnBnq
kfpxtq “

ř

|α|“k
k!
α!x

αBαfpxtq due to the multinomial theorem

and the chain rule. Finally, we observe that gp1q “ fpxq and the Taylor series with remain-

der states that

gp1q “
m´1
ÿ

k“0

gpkqp0q

k!
`
gpk`1qpsq

pk ` 1q!

where 0 ă s ă 1. We plug in the formula for gpkqp0q in terms of f and notice that the6

remainder term decays to 0 as k Ñ8 because of the decay estimate. Thus the Taylor series7

converges uniformly to f for every y P Ω so f is analytic.8

Lemma 5.1.6. Let f : Ω ÞÑ R and suppose for every y there exists r, δ ą 0 and M ă 8

such that for every x P Brpyq the following estimate holds

||f ||Hk ďM
k!

δk

Then f is analytic.9

Proof. The proof is a consequence of the generalized Sobolev inequality which states that

if u PW k,2 “ Hk where k ą n{2 then

||u||
Ck´tn2 u`1 ď C||u||Hk
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Since f P Hk for every k in the ball Brpyq, we have that ||f ||Ck ď C||f ||Hk`p ď cM pk`pq!
δk`p

1

where p “
X

n
2

\

` 1. Now all we need to do is make the bound look like the condition of2

Lemma 5.1.5. To do so, when k ď p we have that pk ` pq! ď p2pq! ď 2pp2p. Furthermore,3

when k ą p from Stirling’s Formula we have that pk`pq! ď k!p2kqp ď ppekk!. Plugging these4

estimates into the estimate for ||f ||Ck we get that ||f ||Ck ď Ck!pδ1q´k where the constants5

are absorbed into C and δ1 “ pδ{eq.6

The road to the analytic regularity theorem is as follows: Using arguments similar to7

5.1.3 show that when f P Hk, u P Hk`2. This is known as the Interior Regularity Theorem8

[11]. Next, combine Theorem 5.1.4 with the fact that f “ 0 to get that u is smooth. Lastly,9

use the bounds from the Interior Regularity Theorem with 5.1.6 to get that u is analytic.10

Note that all these proofs make heavy use of the du Bois-Reymond lemma.11

5.2 Code Listing12

5.2.1 Contents13

• Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. vii14

• General Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. xv15

• Fourier Analysis on Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. xviii16

• Diffusion Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. xxi17

• Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. xxiv18

5.2.2 Utilities19

In this section we describe all the helper functions required for the simulations.20

• Generating Haar wavelets of given size21

function [Hr]=generate_haar(N)22

% Author: Kamlesh Pawar23

% Input :24

% N : size of matrix to be generated, N must be some power of 2.25
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% Output:1

% Hr : Haar matrix of size NxN2

if (N<2 || (log2(N)-floor(log2(N)))~=0)3

error(’The input argument should be of form 2^k’);4

end5

p=[0 0];6

q=[0 1];7

n=nextpow2(N);8

for i=1:n-19

p=[p i*ones(1,2^i)];10

t=1:(2^i);11

q=[q t];12

end13

Hr=zeros(N,N);14

Hr(1,:)=1;15

for i=2:N;16

P=p(1,i); Q=q(1,i);17

for j= (N*(Q-1)/(2^P)):(N*((Q-0.5)/(2^P))-1)18

Hr(i,j+1)=2^(P/2);19

end20

for j= (N*((Q-0.5)/(2^P))):(N*(Q/(2^P))-1)21

Hr(i,j+1)=-(2^(P/2));22

end23

end24

Hr=Hr*(1/sqrt(N));25

end26

• Graph Data Structures Converting a graph from Graph type to struct27
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function [G] = graph2struct(H)1

% Takes a graph type and outputs a graph struct to use for2

% the gsp box3

A = adjacency(H, ’weighted’);4

N = max(size(A));5

G.N = N;6

G.W = A;7

% Assign a default circular embedding8

G.coords=[(cos((0:N-1)*(2*pi)/N))’,(sin((0:N-1)*(2*pi)/N))’];9

G.plotting.limits=[-1,1,-1,1];10

G = gsp_graph_default_parameters(G);11

• Creating a random graph12

function A = RandomGraph(N,p)13

A = zeros(N,N);14

for i = 1:N15

for j = i:N16

A(i,j) = binornd(1,p);17

A(j,i) = A(i,j);18

end19

end20

A = A - diag(diag(A));21

end22

• Creating an N-Fan graph23

function A = nfan(N)24

%Return an N fan graph with 2n+1 vertices25

A = zeros(2*N+1);26
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A(1,:) = ones(1,2*N+1); %The first vertex is the center of the fan1

A(1,1) = 0;2

for i = 1:N3

%i loops through each blade4

A(2*i,1) = 1;5

A(2*i + 1, 1) = 1;6

A(2*i, 2*i + 1) = 1;7

A(2*i + 1, 2*i) = 1;8

end9

end10

• Graph Drawing11

Computing the circular embedding of an N -vertex graph12

function E = embedding(N,k)13

% N is the number of points14

% k is the center of the circle15

n = 0:1:N-1;16

x = cos(n*(2*pi/N)) + k(1);17

y = sin(n*(2*pi/N)) + k(2);18

E = [x;y]19

end20

• Subgraphs Finding the boundary from the index set:21

% This function gives the boundary of a subgraph indexed by sub22

% Arguments:23

% 1. G is the ambient graph encoded as a struct24

% 2. sub indexes the subset25
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function Bindex = boundary(G, sub)1

if ~isstruct(G)2

G = graph2struct(G);3

end4

A = G.W; % Computing the adjacency matrix of G5

Bindex = zeros(length(sub),length(A)); % Stores the index values6

for i=1:length(sub)7

for j=1:length(A(1,:))8

if A(sub(i),j) ~= 0 && isempty(sub(sub==j))9

Bindex(i,j) = j;10

end11

end12

end13

Bindex = unique(Bindex(:));14

Bindex = Bindex(Bindex ~=0);15

end16

Computing subgraphs17

% This function gives three important subgraphs:18

% H -- Subgraph of G induced by sub19

% I -- Subgraph of G induced by sub with boundary edges20

% J -- Subgraph of G induced by sub union boundary vertices21

% deltaS -- the boundary22

% G -- the graph23

% sub -- selection of the vertices24

% First some mopping up. If G isn’t a struct, we convert it to a struct25

% object. If it is then we keep it.26
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function [H,I,J, deltaS] = subs(G,sub)1

if ~isstruct(G)2

G = graph2struct(G);3

end4

% A stores the adjacency (or weight) matrix5

A = G.W;6

% find boundary vertices7

deltaS = boundary(G,sub);8

% find induced subgraph9

H = gsp_subgraph(G,sub);10

% graph with subgraph and boundary11

AdjS = zeros(length(sub)+length(deltaS)); % Creating an adjacency matrix12

AdjS(1:length(sub), 1:length(sub)) = A(sub,sub);13

AdjS(length(sub)+1:end,1:length(sub)) = A(deltaS, sub);14

AdjS(1:length(sub), length(sub)+1:end) = (A(deltaS, sub))’ ;15

I = graph(AdjS);16

I = graph2struct(I);17

I = gsp_subgraph(G,[sub’;deltaS]);18

I.W(end-length(deltaS)+1:end,end-length(deltaS)+1:end) = zeros(length(deltaS));19

% % graph induced by subgraph union boundary20

J = subg(G,[sub’;deltaS]);21
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% AdjS_deltaS = A([sub reshape(deltaS, [1,length(deltaS)])], [sub reshape(deltaS, [1,length(deltaS)])]);1

% % Creating reordered adjacency with subgraph vertices first2

% J = graph(AdjS_deltaS);3

% J = graph2struct(J);4

%5

• Image Processing Computing the graph of an image:6

function [G] = im2graph(I)7

%takes an image as a matrix8

%outputs a graph as a struct with lattice coords9

[n,m] = size(I);10

W = zeros(n*m);11

sigma_p = max(max(I));12

coordinates = zeros(n*m,2);13

for i=1:n*m14

row = floor((i-1)/n) + 1;15

column = mod((i-1),m) + 1;16

coordinates(i,2) = 1 - (row/n) + (1/n);17

coordinates(i,1) = (column/m) - (1/m);18

end19

for i = 1:n*m20

for j = 1:n*m21

row1 = floor((i-1)/n) + 1; %row position of the ith pixel22

column1 = mod((i-1),m) + 1; %column position of the ith pixel23

row2 = floor((j-1)/n) + 1; %row position of the ith pixel24

column2 = mod((j-1),m) + 1; %column position of the ith pixel25

g_distance = norm(coordinates(i,:)-coordinates(j,:));26

p_distance = I(row1, column1) - I(row2,column2);27
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W(i,j) = exp(-((g_distance)^2)/(2))*exp(-((p_distance)^2)/(2*sigma_p));1

end2

end3

G.W = sparse(W);4

G.coords = coordinates;5

G.plotting.limits=[0,1,0,1];6

G = gsp_graph_default_parameters(G);7

• Nodal Sets8

Computing Nodal edges:9

function E = crossings(A,f)10

E = 0;11

N = max(size(A));12

for i = 1:N13

for j =i:N14

if (f(i)*f(j) \ensuremath{<} 0) \&\& (A(i,j) == 1)15

E = E+1;16

end17

end18

end19

end20

Computing Gpλq from Proposition 2.2.1:21

function G = lowerbound(A, lambda)22

N = max(size(A));23

G = 0 ;24

for i = 1:N25

if sum(A(i,:)) < lambda26
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G = G + 1 ;1

end2

end3

5.2.3 General Graph Theory4

• Simulations with subgraphs and their boundaries5

% Compute the graph here. Some sample computations are given below6

% Erdos Renyi random graph7

e = 50;8

v = 100;9

G := Graph::createRandomGraph(v,e, undirected):10

% Random Graph with a bernoulli distributed adjacency matrix11

p=0.05;12

N = 100;13

A = RandomGraph(N,p);14

G = graph(A);15

plot(G)16

% Path graphs17

vec = zeros(1,10);18

vec(2) = 1;19

Adj = toeplitz(vec);20

G = graph(Adj)21

plot(G)22

% Cyclic graph23

vec = zeros(1,10);24

vec(2) = 1; vec(length(vec)) = 1;25
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Adj = toeplitz(vec);1

G = graph(Adj);2

plot(G)3

% Complete graph4

weights = [1 -2 3 -4 5 -6 7 -8 9];5

vec = ones(1,9);6

vec(1) = 0;7

Adj = toeplitz(vec);8

% Define the graph subset here in row or column vector form9

sub = randperm(100,20);10

create the three important subgraphs11

[S, S_deltaS, S_UdeltaS, deltaS] = subs(G,sub);12

define new colormap13

mymap = [1 0 014

0 0 015

0 0 1];16

colormap(mymap);17

% plotting subgraph with boundary18

colours = zeros(1,length(sub)+length(deltaS));19

colours(1:length(sub)) = 1;20

colours(length(sub)+1:end) = 2;21

% subroutine for assigning colours to edges22

Edges = table2array(S_deltaS.Edges);23

Edges = Edges(:,1:2); % Extract the set of edges denoted by ordered pairs24

e_colours = zeros(1,length(Edges)); % Set of edges25
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for i = 1:length(e_colours)1

if Edges(i,1) <= length(sub) && Edges(i,2) <= length(sub)2

e_colours(i) = 1; % case when the edge is in S3

else4

e_colours(i) = 2;5

end6

end7

% end of subroutine8

p = plot(S_deltaS, ’MarkerSize’, 10, ’LineWidth’, 2);9

legend(’Subgraph’, ’Boundary’);10

p.NodeCData = colours;11

p.NodeLabel = [];12

p.EdgeCData = e_colours;13

p14

% plotting graph induced by subgraph union boundary15

v_colours = zeros(1,length(sub)+length(deltaS));16

v_colours(1:length(sub)) = 2;17

v_colours(length(sub)+1:end) = 3;18

% % subroutine for assigning colours to edges19

Edges = table2array(S_UdeltaS.Edges);20

Edges = Edges(:,1:2); % Extract the set of edges denoted by ordered pairs21

e_colours = zeros(1,length(Edges)); % Set of edges22

for i = 1:length(e_colours)23

if Edges(i,1) <= length(sub) && Edges(i,2) <= length(sub)24

e_colours(i) = 2; % case when the edge is in S25

elseif Edges(i,1) > length(sub) && Edges(i,1) > length(sub)26

e_colours(i) = 3; % case when the edge is not in S or the boundary27
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else1

e_colours(i) = 1;2

end3

end4

% % end of subroutine5

subgraph_location = embedding(length(sub),[0 0]);6

boundary_location = embedding(length(deltaS),[4 0]);7

location = [subgraph_location boundary_location];8

p = plot(S_UdeltaS, ’MarkerSize’, 10, ’LineWidth’, 2);9

legend(’Subgraph’, ’Boundary’);10

p.NodeCData = v_colours;11

p.NodeLabel = [];12

p.EdgeCData = e_colours;13

p.XData = location(1,:);14

p.YData = location(2,:);15

p16

5.2.4 Fourier Analysis on graphs17

• Computing Neumann and Dirichlet Operators18

function [N,D, B, deltaT_S, T_S, N_mat] = Neumann_Dirichlet(G,sub)19

% Computes the Neumann and dirichlet operators20

% operator on the subgraph induced by sub21

% G is the graph. Could be in struct type.22

% sub is the selection of vertices23

if ~isstruct(G)24

G = graph2struct(G);25

end26
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[~, S_deltaS, S_UdeltaS, ~] = subs(G,sub);1

L = S_UdeltaS.L; % note that L is stored as sparse double2

D = L(1:length(sub), 1:length(sub)); % the dirichlet matrix3

B = -L(length(sub)+1:end,1:length(sub)); %the boundary map4

l = S_deltaS.L;5

deltaT_S = l(length(sub)+1:end, length(sub)+1:end);6

N = sparse(D - (B’)*(diag(1./diag(deltaT_S)))*B);7

diagonal = diag(l);8

T_S = diag(diagonal(1:length(sub)));9

N_mat = vertcat(sparse(eye(length(sub))), sparse((diag(1./diag(deltaT_S)))*B));10

end11

• Combinatorial Laplacian Spectra of some common graphs12

N = 10;13

A = RandomGraph(N);14

G = graph(A);15

plot(G, ’NodeColor’, ’r’, ’MarkerSize’, 10, ’LineWidth’, 2);16

% Path graphs17

% vec = zeros(1,10);18

% vec(2) = 1;19

% Adj = toeplitz(vec);20

% G = graph(Adj)21

% plot(G)22

% Cyclic graph23

% S24

% vec = zeros(1,10);25

% vec(2) = 1; vec(length(vec)) = 1;26

% Adj = toeplitz(vec);27
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% G = graph(Adj);1

% plot(G)2

% Complete graph3

%weights = [1 -2 3 -4 5 -6 7 -8 9];4

% vec = ones(1,9);5

% vec(1) = 0;6

% Adj = toeplitz(vec);7

% Emb = embedding(N);8

% G = graph(A);9

% L = full(laplacian(G));10

% [V, D] = eig(L);11

%plot(G, ’XData’, Emb(1,:), ’YData’, Emb(2,:), ’ZData’, V(:,6));12

%stem(1:N, V(:,9))13

• Exploring |E | vs Gpλq14

N = 20;15

figure16

title(’Comparing $$\mathcal{E}$$ to G’);17

for k = 1:918

A = RandomGraph(N);19

G = graph(A);20

L = full(laplacian(G));21

[V, D] = eig(L);22

%eigs stores the eigenvalues23

eigs = diag(D);24

%C stores the edge crossing number25

C = zeros(1,N);26

for i = 1:N27

C(i) = crossings(A, V(:,i));28
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end1

%Creating the G vector. For some reason Matlab isn’t allowing me to broad2

%cast so I’ll just do it via a for loop. Sigh.3

G = zeros(1,N);4

for i = 1:N5

G(i) = lowerbound(A, eigs(i));6

end7

subplot(3,3,k)8

plot(eigs(2:N), C(2:N), ’r.’);9

hold on10

plot(eigs(2:N), G(2:N)/2, ’b-’);11

end12

• Laplacian Spectra of Fans13

A = nfan(3);14

G = graph(A);15

D = diag(A*ones(max(size(A)),1));16

plot(G);17

L = full(laplacian(G));18

L_norm = D^(-1/2)*L*D^(-1/2);19

[V,D] = eig(L_norm);20

5.2.5 Diffusion maps21

• Computing a Laplacian Eigenmap22

function [Diff_maps] = My_Eigenmaps(G,t,dim)23

% Spits out 5 dimensional laplacian eigenmaps given a graph G in struct24

% form25

N = max(size(G.W));26

% compute the random walk matrix here27

% t is the scaling factor in diffusion map28
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lap = gsp_create_laplacian(G, ’normalized’); %lap will be a struct1

D = diag(full(lap.W)*(ones(N,1))); %Stores diagonal matrix2

M = eye(N) - full(lap.L); %Regularized random walk3

[X, Lambda] = eigs(M,dim+1,’largestabs’); %Compute spectral decomposition up to 5 eigenvectors4

Phi = D^(1/2)*X; %Phi matrix5

Psi = D^(-1/2)*X; %Psi matrix; you want to extract its columns!6

Diff_maps = (Psi)*(Lambda^t); %Multiplying each column with the respective eigenvalue7

Diff_maps = Diff_maps(:,2:end); %Dropping the first column as it’s all a constant8

% Each column of diff_maps contains a coordinate of the diffusion map9

% to plot it, plot Diff_maps(:,j) in the jth coordinate10

end11

• Laplacian eigenmaps with digital weights12

First we provide a graph G. Enter graph here13

N = 128; % Number of vertices14

G = gsp_spiral(N,3); % Creating a graph in struct version15

Diff_maps = My_Eigenmaps(G,1);16

% Plotting the jdim diffusion map17

%plot(Diff_maps(:,1),Diff_maps(:,2),’ro’);18

plot3(Diff_maps(:,3),Diff_maps(:,4),Diff_maps(:,1),’ro’);19

• Diffusion maps for ring, spiral, swiss roll, sphere, and stochastic block graphs20

% Uncomment each section to visualize the respective laplacian eigenmap21

% Map for rings22

G = gsp_ring(1000);23

W = full(G.W);24

[mappedX, mapping, lambda] = lapbasic(W, 3, 1, ’JDQR’);25

for i=0:0.1:126
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plot(mappedX(:,1),mappedX(:,3))1

hold on2

end3

% % Map for spiral4

%5

% G = gsp_spiral(100,3);6

% W = full(G.W);7

% [mappedX, mapping, lambda] = lapbasic(W, 3, 1, ’JDQR’);8

% for i=0:0.1:19

% plot3(((lambda(1))^(-i))*mappedX(:,1),((lambda(2))^(-i))*mappedX(:,2),((lambda(3))^(-i))*mappedX(:,3))10

% hold on11

% end12

% % Map for sphere13

%14

% G = gsp_sphere(100);15

% W = full(G.W);16

% [mappedX, mapping, lambda] = lapbasic(W, 3, 1, ’JDQR’);17

% for i=0:0.1:118

% plot3(((lambda(1))^(-i))*mappedX(:,1),((lambda(2))^(-i))*mappedX(:,2),((lambda(3))^(-i))*mappedX(:,3))19

% hold on20

% end21

% Map for swiss roll22

% G = gsp_swiss_roll(500);23

% W = full(G.W);24

% [mappedX, mapping, lambda] = lapbasic(W, 3, 1, ’JDQR’);25

% % for i=0:0.1:126

% % plot(((lambda(1))^(-i))*mappedX(:,1),((lambda(2))^(-i))*mappedX(:,2))27

% % hold on28
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% % end1

% plot3(((lambda(1))^(-i))*mappedX(:,1),((lambda(2))^(-i))*mappedX(:,2),((lambda(3))^(-i))*mappedX(:,3),’o’)2

% Map for stochastic block graphs3

% G = gsp_stochastic_block_graph(1024,10);4

% W = full(G.W);5

% [mappedX, mapping, lambda] = lapbasic(W, 3, 1, ’JDQR’);6

% for i=0:0.1:17

% plot3(((lambda(1))^(-i))*mappedX(:,1),((lambda(2))^(-i))*mappedX(:,2),((lambda(3))^(-i))*mappedX(:,3),’o’)8

% hold on9

% end10

5.2.6 Figures11

Chapter 112

• Figure 1.113

H = generate_haar(512);14

times = linspace(0,1,512);15

figure;16

for i=1:817

if i==118

titlestring = strcat("$\varphi$");19

minlim = -1;20

maxlim = 1;21

else22

j = floor(log2(i-1));23

k = (i-1)-2^j;24

titlestring = strcat("$\psi_{",num2str(j),",",num2str(k),"}$");25

maxlim = max(H(i,:));26

minlim = min(H(i,:));27
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end1

subplot(2,4,i);2

set(gca,’TickLabelInterpreter’,’latex’);3

set(groot, ’DefaultLegendInterpreter’,’latex’);4

plot(times,H(i,:),’LineWidth’,2,’DisplayName’,’Level 8 Haar approximation’);5

yticks([]);6

xticks([0 0.25 0.50 0.75 1]);7

xticklabels({’0’, ’$\frac{1}{4}$’, ’$\frac{1}{2}$’, ’$\frac{3}{4}$’, ’1’});8

set(gca,’FontSize’,16);9

legend(’FontSize’,11);10

title(titlestring,’interpreter’,’latex’,’FontSize’,20);11

• Figure 1.212

load BabyECGData;13

% figure;14

% p1 = plot(times,HR,’-’);15

% xlabel(’Hours’);16

% ylabel(’Heart Rate’);17

% p1.Color(4) = 0.25;18

% hold on;19

[a,d] = haart(HR,’integer’);20

% HaarHR = ihaart(a,d,1,’integer’);21

% plot(times,HaarHR,’Linewidth’,1)22

% title(’Haar Approximation of Heart Rate’)23

imz = zeros(10,2048);24

for i = 1:1025

HaarHR = ihaart(a,d,i,’integer’);26

imz(i,:) = HaarHR’;27

end28
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figure;1

subplot(2,1,1);2

set(gca,’TickLabelInterpreter’,’latex’);3

set(groot, ’DefaultLegendInterpreter’,’latex’);4

p1 = plot(times,HR,’-’,’DisplayName’, ’Heart Rate’);5

xlabel(’Hours’, ’interpreter’,’latex’, ’FontSize’,16);6

ylabel(’Heart Rate’,’interpreter’, ’latex’,’FontSize’,16);7

p1.Color(4) = 0.2;8

hold on9

p2 = plot(times,imz(3,:),’r-’,’LineWidth’,1,’DisplayName’,’Level 8 Haar approximation’);10

hold on11

p3 = plot(times,imz(7,:),’k--’,’LineWidth’,2,’DisplayName’,’Level 4 Haar approximation’);12

legend(’FontSize’,11);13

subplot(2,1,2);14

colormap copper15

set(gca,’TickLabelInterpreter’,’latex’);16

set(groot, ’DefaultLegendInterpreter’,’latex’);17

image(imz,’CDataMapping’, ’scaled’);18

cbh = colorbar;19

cbh.Ticks = [];20

ylabel(cbh, ’Heart Rate’,’interpreter’,’latex’,’FontSize’,16);21

xticks([]);22

%xlabel("Hours", ’interpreter’,’latex’,’FontSize’, 16);23

ylabel("Scale (j)", ’interpreter’,’latex’,’FontSize’, 16);24

• Figure 1.325

load mandrill26

%im = imread(’Rcirc.png’);27

im = imresize(X,[512 512]);28
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%im = im(:,:,1);1

[a,h,v,d] = haart2(im,’integer’);2

figure;3

for i=0:84

row = floor(i/3) + 1;5

column = mod(i,3) + 1;6

subplot(3,3,i+1);7

imrec = ihaart2(a,h,v,d,i,’integer’);8

colormap parula9

imagesc(imrec);10

title(strcat(’Level’, " ", num2str(8-i + 1)), ’interpreter’, ’latex’,’FontSize’,20);11

axis off;12

end13

% to extract a 2^N x 2^N sized image, just pick d(N:end) and run ihaart14

• Figure 1.515

im = imread(’obama.jpg’);16

im = imresize(im, [512 512]);17

[a,h,v,d] = haart2(im,’integer’);18

D = d(5:end);19

H = h(5:end);20

V = v(5:end);21

Imz = ihaart2(a,H,V,D,1,’integer’);22

Imz = double(Imz(:,:,1));23

G = im2graph(Imz);24

S = gsp_compute_fourier_basis(G);25

U = full(S.U);26
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fiedler_vector = U(:,2);1

M = median(fiedler_vector);2

classifier = fiedler_vector > 0;3

gsp_plot_signal(G,classifier);4

colormap flag5

Chapter 26

• Comparing the DHT and DFT of a 32-bit image with a central spot7

Img = zeros(32,32);8

Img(16,16) = 1;9

Img(16,17) = 1;10

Img(17,16) = 1;11

Img(17,17) = 1;12

FT = fft2(Img);13

[a,h,v,d] = haart2(Img, ’integer’);14

HT = cell2mat(d(1));15

figure();16

subplot(2,2,1);17

imagesc(Img);18

caxis(’manual’);19

caxis([-1 1])20

title(’Original Image’,’interpreter’,’latex’,’FontSize’,20);21

set(gca,’XColor’, ’none’,’YColor’,’none’)22

subplot(2,2,2);23

imagesc(HT);24

caxis(’manual’);25
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caxis([-1 1])1

title(’16-point Haar Coefficients’,’interpreter’,’latex’,’FontSize’,20);2

set(gca,’XColor’, ’none’,’YColor’,’none’)3

subplot(2,2,3);4

imagesc(real(FT));5

caxis(’manual’);6

caxis([-1 1])7

title(’Real part of Fourier coefficients’,’interpreter’,’latex’,’FontSize’,20);8

set(gca,’XColor’, ’none’,’YColor’,’none’)9

subplot(2,2,4);10

imagesc(imag(FT));11

caxis(’manual’);12

caxis([-1 1])13

title(’Imaginary part of Fourier coefficients’,’interpreter’,’latex’,’FontSize’,20);14

set(gca,’XColor’, ’none’,’YColor’,’none’);15

cbh = colorbar;16

cbh.Ticks = [-1 1];17

ylabel(cbh, ’Luminescence/Coefficient Value’,’interpreter’,’latex’,’FontSize’,20);18

Chapter 319

• Figure 3.120

Let’s create a circulant matrix!21

i = 10;22

v = [0 ones(1,i) zeros(1,99-(2*i)) ones(1,i)];23

A = toeplitz([v(1) fliplr(v(2:end))], v);24

P = eye(100);25

P = P(randperm(100),:);26
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Adj = P*A*P’;1

G = graph(Adj);2

G = graph2struct(G);3

Diff_Maps = My_Eigenmaps(G,1,3);4

% Plotting the jdim diffusion map5

subplot(1,2,1)6

colormap gray7

imagesc(Adj);8

title("Adjacency Matrix of a circulant graph $V=100$, $k=20$",’fontsize’,16,’interpreter’,’latex’);9

subplot(1,2,2);10

scatter(Diff_Maps(:,1),Diff_Maps(:,2));11

title("2 Dimensional Diffusion embedding",’fontsize’,16,’interpreter’,’latex’);12

%plot3(Diff_maps(:,1),Diff_maps(:,2),Diff_maps(:,3),’ro’);13

• Figure 3.214

G = gsp_torus(32,32);15

Diff_Maps = My_Eigenmaps(G,1,5);16

subplot(1,2,1)17

plot3(G.coords(:,1),G.coords(:,2),G.coords(:,3),’ro’);18

title("Uniformly Sampled points on a Torus",’fontsize’,18,’interpreter’,’latex’);19

subplot(1,2,2);20

plot3(Diff_Maps(:,1),Diff_Maps(:,2),Diff_Maps(:,3),’bo-’);21

title("3 Dimensional Diffusion embedding",’fontsize’,18,’interpreter’,’latex’);22

%plot3(Diff_maps(:,1),Diff_maps(:,2),Diff_maps(:,3),’ro’);23
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• Figure 3.31

% Extracting the image2

Iz = imread(’Rcirc.png’);3

im = imresize(Iz,[32 32]);4

im = im(:,:,1);5

H = im2graph(im2double(im));6

Diff_maps = My_Eigenmaps(H,1,5);7

figure;8

subplot(2,2,1);9

imagesc(Iz(:,:,1));10

title(’Original Image’,’interpreter’,’latex’,’FontSize’,20);11

set(gca,’xtick’,[]);12

set(gca,’ytick’,[]);13

• Figure 3.414

Iz = imread(’Rcirc.png’);15

im = imresize(Iz,[32 32]);16

im = im(:,:,1);17

H = im2graph(im2double(im));18

t = [0 0.25 0.5 0.75 1];19

for i=t20

Diff_maps = My_Eigenmaps(H,i,5);21

scale = num2str(i);22

labelstring = strcat(’t=’,scale);23

scatter3(Diff_maps(:,1),Diff_maps(:,2),Diff_maps(:,3),’DisplayName’,labelstring);24

hold on;25

end26

legend;27
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scatter(Diff\_maps(:,1),Diff\_maps(:,2),pointsize,Diff\_maps(:,3))1

pointsize = 20; colorbar jet;2

scatter(Diff\_maps(:,1),Diff\_maps(:,2),pointsize,Diff\_maps(:,3)); colormap jet;3

• Figure 3.5a4

N = 256;5

G = gsp_ring(N);6

sub = N/4:(3*N/4);7

NDiff_Maps = Neumann_DiffMaps(G,sub,3,0.1);8

[S, S_deltaS, S_UdeltaS, deltaS] = subs(G,sub);9

Diff_Maps = gsp_laplacian_eigenmaps(S,3);10

figure;11

subplot(2,2,1);12

gsp_plot_graph(G);13

title(’Original Graph’,’interpreter’,’latex’,’FontSize’,16);14

subplot(2,2,2);15

gsp_plot_graph(S);16

title(’Subgraph’,’interpreter’,’latex’,’FontSize’,16);17

subplot(2,2,3);18

gsp_plot_graph(S_deltaS);19

title(’Subgraph with Boundary’,’interpreter’,’latex’,’FontSize’,16);20

subplot(2,2,4);21

plot3(NDiff_Maps(:,3),NDiff_Maps(:,2),NDiff_Maps(:,1),’ro’,’DisplayName’,’Neumann’);22
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hold on;1

plot3(Diff_Maps(:,3),Diff_Maps(:,2),Diff_Maps(:,1),’bo’,’DisplayName’,’Diffusion’);2

title(’Diffusion Embeddings’,’interpreter’,’latex’,’FontSize’,16);3

legend;4

• Figure 3.5a5

N = 256;6

G = gsp_spiral(N);7

sub = 1:floor(N/3);8

NDiff_Maps = Neumann_DiffMaps(G,sub,3,0.1);9

[S, S_deltaS, S_UdeltaS, deltaS] = subs(G,sub);10

Diff_Maps = gsp_laplacian_eigenmaps(S,3);11

figure;12

subplot(2,2,1);13

gsp_plot_graph(G);14

title(’Original Graph’,’interpreter’,’latex’,’FontSize’,16);15

subplot(2,2,2);16

gsp_plot_graph(S);17

title(’Subgraph’,’interpreter’,’latex’,’FontSize’,16);18

subplot(2,2,3);19

gsp_plot_graph(S_deltaS);20

title(’Subgraph with Boundary’,’interpreter’,’latex’,’FontSize’,16);21
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subplot(2,2,4);1

plot3(NDiff_Maps(:,3),NDiff_Maps(:,2),NDiff_Maps(:,1),’ro’,’DisplayName’,’Neumann’);2

hold on;3

plot3(Diff_Maps(:,3),Diff_Maps(:,2),Diff_Maps(:,1),’bo’,’DisplayName’,’Diffusion’);4

title(’Diffusion Embeddings’,’interpreter’,’latex’,’FontSize’,16);5

legend;6

• Figure 3.5b7

% Experiments with spheres8

size = 512;9

sphere_graph = gsp_sphere(size);10

coordinates = sphere_graph.coords;11

elevation = coordinates(:,3);12

polarcap = coordinates(elevation > 1/2,:);13

%plot3(polarcap(:,1),polarcap(:,2),polarcap(:,3),’ro’);14

cap = find(elevation > 1/2);15

distances = gsp_distanz(coordinates’,coordinates’);16

eps=0.5;17

weightmatrix = exp(-(1/(2*(eps)^2))*(distances.^2)) - eye(size);18

S = graph(weightmatrix,’upper’);19

S = graph2struct(S);20

S.coords = coordinates;21

% Run Neumann Diffusion on the polar cap22

NDiff_Maps = Neumann_DiffMaps(S,cap’,5,1);23

% Run Standard Diffusion on the polar cap24

[T, T_deltaT, T_UdeltaT, deltaT] = subs(S,cap’);25

Diff_maps = My_Eigenmaps(T,1,5);26

%plot both27
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figure;1

subplot(2,2,1);2

plot3(coordinates(:,1),coordinates(:,2),coordinates(:,3),’bo’,’DisplayName’,’Sphere’);3

hold on;4

plot3(coordinates(cap,1), coordinates(cap,2), coordinates(cap,3),’ro’,’DisplayName’,’Cap’);5

title("Sphere and Polar Cap",’interpreter’,’latex’,’FontSize’,16);6

legend;7

subplot(2,2,2);8

plot3(Diff_Maps(:,3),Diff_Maps(:,2),Diff_Maps(:,1),’ro’);9

title(’Diffusion Map’,’interpreter’,’latex’,’FontSize’,16);10

subplot(2,2,3);11

plot(NDiff_Maps(:,1),NDiff_Maps(:,2),’bo’);12

title(’2-D Neumann Map’,’interpreter’,’latex’,’FontSize’,16);13

subplot(2,2,4);14

plot3(NDiff_Maps(:,1),NDiff_Maps(:,2),NDiff_Maps(:,3),’bo’);15

title(’3-D Neumann Map’,’interpreter’,’latex’,’FontSize’,16);16

xxxv



Corrections1

When originally submitted, this honours thesis contained a number of typographical and2

technical errors. The author is grateful for their readers for having spotted these errors3

and suggested stylistic changes whenever needed, for example, to highlight original con-4

tributions. The current version includes these changes. The following is the list of all5

corrections:6

Various places in the thesis. There were 15 syntactical errors involving grammatical,7

typographical, or punctuation mistakes pointed out by the readers of the original version.8

These have all been corrected.9

Figures. All Figures except 3.2, 3.4, 3.5b, and 3.5a were remade for better readability.10

Code for generating these figures can be found in subsection 5.2.6 of the Appendix. The11

captions were altered to be more descriptive of their respective figures.12

References. References were added to Examples 1.2.1 and 1.2.3, and Theorems 1.1.1,13

1.1.2, 1.1.3, 2.1.12, and 2.1.5.14

Other changes:15

Title of Section 1.1: “Basics” was replaced with “Fundamentals.”16

p.2, l.14: Added here from Section 1.4: “Lastly we add [. . . ] a fruitful theory of a mul-17

tiresolution framework.” “Lastly we add that” was replaced with “Consequently.”18

p.2, l.21: Added for transition: “But we first revisit [. . . ] the following section.”19

p.4, l.1: Replaced = with “
a.e

.20

p.4, l.2: Replaced S1 with r´π, πs.21

p.4, l.2: Added 1
2π to the left-hand side of Equation 1.1.4.22

p.4, l.9: Replaced “L1pRq” with “L1pRq
ş

L2pRq.” p.9, l.10: Changed subscript from “j”23

to “n.”24
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p.9, l.10: Replaced “ψp2jx´ kq” with “ψj,k.”1

p.11, l.17: Added a reference to the implementation of the 2-D Discrete Haar Wavelet2

transform for more information on Figure 1.3.3

p.14, l.3: Added “and σx and σp are position and luminescence sensitivities respectively.”4

p.15, l.4: Replaced the previous sentence at this location with one emphasizing the novel5

result: “We show [. . . ] do not exist on Euclidean domains.”6

p.15, l.12: The following sentences were added to emphasize the novel results: “All the7

results mentioned in this section are novel; [ ... ] The code can be found in the Appendix8

at the end of this work.”9

p.18, l.1: Added “open” after “...any.”10

p.18, l.11: Added “We will occasionally drop Ω when there is no ambiguity about the11

domain.”12

p.18, l.17: Added “For the remainder of this section, we assume Ω Ď Rn is an open simply13

connected domain.”14

p.19, l.4: Corrected Definition 2.1.3 to include weak partial derivatives.15

p.20, l.13: Added a blank space before “...D.”16

p.21, l.7: Moved ||u||X to the right hand side of the inequality.17

p.21, l.19: Removed “separable” and added “When H is separable, i.e it admits a count-18

able basis.”19

p.26, l.19: Changed wi to di.20

p.28: Replaced all instances of the subset A with F .21

p.28: Changed all instances of “D” to “T.”22

p.29, l.16: Replaced “crossing” with “nodal.”23

p.29: Changed all instances of “Wij” to “wij .”24

p.33, l.3: Removed “the ambient graph.”25

Chapter 3: Replaced all instances of “D” denoting the degree matrix with “T .”26

p.44, l.2: Added “(a graph whose adjacency matrix is circulant).”27

p.44, l.8: Added for clarity: “A set of points [. . . ] angle with the center).”28

Appendix: A listing of all of the author’s code was added to the Appendix.29
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