
Two applications of quadrature rules: Cubature
and Integral equations

Shashank Sule

June 5, 2021

1 Introduction

In this project, I present the use of quadrature techniques in two applications: the closely
related problem of cubature, and the Nystrom method of solving Fredholm integral equa-
tions of the second kind.

2 Cubature

Although we discussed several numerical algorithms in class, there was little mention on
how they extended to the problem of cubature: calculating N-dimensional integrals. This
was because when nested quadrature rules are applied to evaluate multiple integrals, the
number of function evaluations scales exponentially with the number of subdivisions.
For example, the error of a pth order Newton-Cotes rule in D dimensions is O(N−p/D),
worsening an already slow algebraic convergence rate. This is the curse of dimension-
ality and to remedy it we studied three probabilistic cubature techniques: Monte Carlo
Integration, Importance Sampling, and Recursive Stratified Sampling. By quantifying
the error as the variance of an estimator of the mean, we were able to observe that the er-
ror was dimension-independent, thus allowing us to compute high-dimensional integrals
with relative ease. Yet, the Monte-Carlo rules only had algebraic variance at O(N−1/2)
(this was also the worst-case error for RSS). Here I would like to revisit cubature through
nested quadrature rules and examine a case in which convergence is comparable (or per-
haps better).

2.1 The N-dimensional Paley-Wiener theorem and the rectangular rule

We have seen that although Newton-Cotes rules showed algebraic convergence in gen-
eral, they exhibited exponential convergence for periodic functions. This was due to the
fact that the Fourier co-efficients of periodic functions converged exponentially, so the
error term could be bounded under an exponential. This raises the more interesting
question of how Newton-Cotes rules fare in higher dimensions. A preliminary look at
2 dimensions is quite encouraging:

1

In [70]: # estimate error
exact = 0.0

Ns = 10.0.^(1:0.25:4)

approximations = [nested_rect_2d(f, 0.0, 2*π, Int64(trunc(N))) for N in Ns]
errors = abs.(approximations)

figure()
loglog(Ns.^2, errors, "o-")
xlabel(L"function evaluations N_{eval}")
ylabel("relative integration error");
ylim(10^(-17),10^(-13))
title(L"Nested rectangular Rule for $f(x,y)=e^{\sin(x)}\cos(y)$");

Indeed, when we integrate f (x, y) = esin(x) cos(y) on the domain [0, 2π]× [0, 2π], we
get to machine accuracy in almost 100 function evaluations.

The rectangular rule in one dimension can be analysed as follows: Let f be periodic
and C∞ with the period [0, T] and let {xn} be N + 1 evenly spaced points (including the

2

endpoints). Then each subinterval has length T/N = ∆. In this case, the rectangular rule
is given by

∫ T

0
f (t) dt ≈

i=N−1

∑
k=0

f (xk)∆ =
i=N−1

∑
i=0

f
(kT

N

)
∆

From the Fourier series formula we get that f (t) = ∑n∈Z f̂ (n)e−iωnt. Plugging the
expression into the above equation we get that

∫ T

0
f (t) dt ≈ IN =

i=N−1

∑
i=0

∆ ∑
n∈Z

f̂ (n)e−iωn kT
N = ∆ ∑

n∈Z

f̂ (n)
N−1

∑
k=0

e−i 2π
T n kT

N = ∆ ∑
n∈Z

f̂ (n)
N−1

∑
k=0

e−i 2πnk
N

Now ∑N−1
k=0 e−i 2πnk

N = N ⇐⇒ n ∈ NZ and 0 otherwise. As a consequence,

IN ∑
k∈NZ

f̂ (k) = T f̂ (0) + T ∑
k∈NZ∗

f̂ (k) =⇒ |IN − I| ≈ T ∑
k∈NZ∗

f̂ (k)

Since f is assumed to be smooth and periodic, we have that | f̂ (k)| ≈ O(eα|k|).

T ∑
k∈NZ∗

f̂ (k) ≈ O(e−αN) +O
(

∑
k∈NZ∗\N

eα|k|
)

Since ∑k∈NZ∗\N eα|k| ≤ 2
∫ ∞

N e−αxdx = 1
α e−αN, we get a bound as a function of N only:

|I − IN| ≈ O(e−αN)

Now suppose f : RD 7→ R and f has period T in each direction, i.e f (x1, . . . xk . . . xn) =
f (x1, . . . xk + T . . . xn) ∀ k : 1 ≤ k ≤ n the n-dimensional Fourier series on D = [0, T]n is
given by

f (x) = ∑
k∈Zn

f̂ (k)eiωk·x

where

f̂ (k) =
1

Tn

∫
D

f (x)e−iωk·x dx

We would like to estimate the following integral I using the rectangular rule by sub-
divding each [0, T] into N intervals of size T/N

I =
∫

D
f (x) dx ≈ ∑

0≤j1≤N−1
· · · ∑

0≤jn≤N−1
(T/N)D f (xj1 , . . . , xjn) = (T/N)D ∑

j∈ZD
N

f (j)

We can substitute the Fourier series for f in this expression, just like in the 1-D case.
Furthermore, we can isolate the phase on each dimension because of the separability of
the function e−iωk·x:

3

(T/N)D ∑
j∈ZD

N

f (j) = (T/N)D ∑
k∈Zn

f̂ (k) ∑
0≤j1≤N−1

e−iωj1 T
N · · · ∑

0≤jD≤N−1
e−iωjD T

N

= (T/N)D ∑
k∈NZD

f̂ (k)ND = TD ∑
k∈NZD

f̂ (k)

We would like a bound on the summation term. A rigorous result using the Cauchy
integral formula on the complex torus can be found in [Hen11]. Here I would like to pro-
vide a heuristic justification based on radial decay. It is most easily seen in 2 dimensions.
Fix x0, y0 ∈ R. Define G(y) = f (x0, y) and F(x) = f (x, y0). Now F and G are both peri-
odic with period T so they have Fourier coefficients. We can relate them to the coefficients
of f in the following way:

f̂ (k, l) =
∫ T

0

∫ T

0
f (x, y)e−iωkxe−iωly dx dy =

∫ T

0
e−iωly

∫ T

0
f (x, y)e−iωkx dx dy = ̂̂F(k)(l) = ̂̂G(l)(k)

where the last equality follows if we consider integrating on y first instead of x. If k
and l are fixed, F̂ and Ĝ are both periodic functions in y and x respectively so their Fourier
series co-efficients decay exponentially from the 1-D Paley-Wiener theorem. Thus, for a
fixed k,

f̂ (k, l) ≈ O(e−α1|l|) ⇐⇒ | f̂ (k, l)| ≤ Cke−αk|l|

, and for a fixed l,

f̂ (k, l) ≈ O(e−α2|k|) ⇐⇒ | f̂ (k, l)| ≤ Cle−αl |k|

Note that these constant prefactors and decay rates aren’t uniform: they depend on the
fixed value. However, the constants themselves decay rapidly so we may bound them
under a single uniform constant. Furthermore the decay rates αi are bounded below by
0 so we can pick their infimum over the lattice that would give a slower rate of decay.
Finally, to get a bound on the Fourier coefficient at a point in the Z2 lattice, we can ap-
proach the given point in the x direction, incurring an exponential decay and then pro-
ceed to the point in the y direction, incurring further decay. In this sense, the Fourier
co-efficients decay radially. Thus, | f̂ (k, l)| ≈ O(e−α(|k|+|l|). In the error for the rectangular
rule (k, l) ∈ NZ2 so |k|+ |l| ≥ N ⇐⇒ e−α(|k|+|l| ≤ e−αN. Just as we did in the 1-D case,
we can take the term with N in the exponential and bound the rest of the series under
another exponential with N in the exponent.

As a consequence, we have that

|IN − I| ≈ O(TDe−αN)

Since p
√

Neval = N, we have that $ |I_N - I| ≈ O(T{D}e{−α p
√

Neval})$.
There are two points to note here. First, the rate of decay is slower with increasing

dimension. Second, the constant prefactor increases exponentially with D. Although
given a fixed dimension the rectangular rule converges exponentially, across dimensions

4

the error term scales poorly. Thus, it seems that the initial view of the convergence of the
rectangular rule for periodic functions was slightly misled: It may not scale as well over
the dimension.

Keeping the number of evaluations fixed at Neval = 1000, I plotted the error for the
integrals of the following 5-D periodic function

f (x, y, z, w, a) = (2 sin4(z)− 1)(sin5(a)− ecos(a) − 1)esin(x) cos2(y)

Since this function is separable, for each dimension I picked the part of the function
that corresponded to those variables. For example, for the 1 − D integration, I picked
f1(x) = esin(x), f2(x, y) = esin(x) cos2(y) and so on.

In [81]: errs = abs.((approxs.-exacts)./exacts)
figure()
semilogy(LinRange(1,5,5), errs, "o-");
title("Error in rectangular rule approximation as a function of dimension");
xlabel("Dimension");
ylabel("Error");

5

3 Integral equations

Imagine you own a fish tank and you are wondering about the rate at which you should
keep adding food to the tank. You observe that at any given time t, the proportion of food
left in the tank is k(t). Suppose initially there were a ounces of food in the tank. If you
add food at the rate u(τ) ounces per second, then in a small time interval you would have
added u(τ)∆τ ounces of food. Then at time T, T − τ seconds would have elapsed, so the
proportion of food left over from the addition would be k(T− τ)u(τ)∆τ. Integrating over
τ from 0 to T, the total amount of food in the tank at time T is given by

F(T) =
∫ T

0 k(T − τ)u(τ) dτ
Suppose you would like there to be a constant amount of food at all times. Then the

above equation becomes

C =
∫ T

0
k(T − τ)u(τ) dτ

This is known as an Integral equation because we are trying to solve for an unknown
function u with the knowledge of how it integrates against a function k. Integral equa-
tions are especially ubiquitous in several areas of physics, from potential theory to fluid
dynamics. Just like their more famous counterpart, differential equations, they rarely
have analytic solutions so numerical methods are all the more important to solve them.

4 Nyström’s method for Fredholm equations of the second
kind

Suppose we would like to solve the following integral equation:

f (t) = λ
∫ b

a
K(s, t) f (s) ds + g(t)

This is known as a Fredholm equation of the second kind. One approach to calculating
f is by applying a quadrature rule on the integral. This approach is called Nystrom’s
method and has been described in [Press2007] and [Lin85] Sampling at the points ti we
get that

f (ti) ≈ λ
N

∑
j=1

wjK(ti, sj) f (sj) + g(ti)

We may interpret the summation as a matrix multiplication:

N

∑
j=1

wjK(ti, sj) f (sj) =

w1K(t1, s1) . . . wNK(t1, sN)
...

w1K(tn, s1) . . . wNK(tn, sN)

 f (s1)

...
f (sn)

 = Kf

Now if we set tj = sj then we have the following matrix equation

6

f = λKf + g

We can rearrange it to get

(I − λK)f = g

Solving for f yields the values of f at the sample points. But just because we know f at
finitely many points does not mean we know it everywhere on the interval. We still need
to interpolate f using some known functions. Nyström’s insight was that we don’t need
to construct an interpolation: we already have it fr om the quadrature rule.

f (t) = λ
N

∑
j=1

wjK(t, sj) f (sj) + g(t)

In the following example, I implement Nyström’s method using two quadrature rules:
Simpson’s rule and Gauss-Legendre quadrature. Suppose the given integral equation is

f (x) = e−x − 1
2
+

1
2

e−(x+1) +
1
2

∫ 1

0
(x + 1)e−xy f (y) dy

Recall that the composite Simpson’s rule is given as

IN =
1
3

(
h f (a) + 2h

N−1

∑
n=1

f (a + 2nh) + 4h
N

∑
n=1

f (a + (2n− 1)h) + h f (b)
)

In [2]: figure()

plot(samples, F, "rx", label="Solution using Simpson's rule")
plot(samples, exp.((-1).*samples), "b+", label="True solution")
plot(samples, s.(samples), "r-", label="Interpolated solution")
legend()
xlabel("x")
ylabel("f(x)")
title("Solution to integral equation using Nystrom's method and Simpson's rule for N = 20");

7

In order to use Gauss quadrature, note that we cannot implement it directly. The
integral is on [0, 1] so we need to convert it to one on [−1, 1]. Using the substitution
u = 2s− 1, we get that

1
2

∫ s=1

s=0
(t + 1)e−ty f (s) ds = λ

∫ s=1

s=0
K(t, s) f (y) dy =

λ

2

∫ u=1

u=−1
K(t,

u + 1
2

) f (
u + 1

2
) du

Setting K′(t, u) = K(t, u+1
2) and F(u) = f (u+1

2), the integral becomes

λ

2

∫ u=1

u=−1
K′(t, u) f (u) du

This integral can be evaluated using Gauss-Legendre quadrature. One more detail
remains: where should we sample the ti’s? In order for Nystrom’s method to work, the
vector f found at the left side of the discretized equation should match the vector F on
the right-hand side. As a consequence, we would like f (ti) = F(ui) where ui’s are the
quadrature points. Since we know that F(u) = f (u+1

2), F(ui) = f (ui+1
2) = f (ti) ⇐⇒

ti =
ui+1

2

In [53]: figure()

plot(tis,interpolation.(tis), label="Interpolated Solution");
plot(tis, Points, "o", label="Solution using Gauss quadrature");
plot(tis, exp.((-1).*tis), label="True solution")

8

title("Solving the Integral equation using Nystrom's method and Gauss-Legendre quadrature with N=20")
ylabel("f(x)")
xlabel("x");
legend();

This result might suggest that Gauss-Legendre quadrature does worse at solving inte-
gral equations. This is in general is not true. The point of Nystrom’s interpolation formula
is that if we denote f I as the interpolated solution, then we have

f I(t) = λ
N

∑
i=1

K(t, si) f (si)wi + g(t) and

f (t) = λ
∫ b

a
K(t, s) f (s) ds + g(t)

=⇒ | f − f I(t)| =
∣∣∣ λ

N

∑
i=1

K(t, si) f (si)wi + g(t)− λ
∫ b

a
K(t, s) f (s) ds + g(t)

∣∣∣ = ε I

Here ε I is the error in the quadrature rule. Thus, Nystrom’s method finds a way to
bring the error down to the quadrature rule that we use, so in general Gauss-Legendre
quadrature should do better than Simpson’s rule as the number of samples increase. But
this fails spectacularly when we consider N = 40 for Gauss-Legendre quadrature:

In [62]: time = Nystrom_Gauss(40)[1]
interpola = Nystrom_Gauss(40)[2]

9

figure()
plot(time, interpola, "o-", label="Interpolated Solution")
plot(time, exp.((-1).*time), label="True solution")
title("Solving the Integral equation using Nystrom's method and Gauss-Legendre quadrature with N=40")
ylabel("f(x)")
xlabel("x");
legend();

This is actually due to an implementation issue with the Legendre Polynomials. If
we look at the Gaussian weights for N = 15, they match the exact ones found in
https://pomax.github.io/bezierinfo/legendre-gauss.html :

In [63]: print(Gaussian_weights(15))

[0.0307532, 0.070366, 0.107159, 0.139571, 0.166269, 0.186161, 0.198431, 0.202578, 0.198431, 0.0307532, 0.070366, 0.107159, 0.139571, 0.186161, 0.166269]

However, for N ≥ 40, the following phenomenon occurs:

In [73]: print("Gauss-Legendre weights for N=40: ",Gaussian_weights(40))

figure()

plot([i for i in 1:40], Gaussian_weights(40),"o",label="Gauss-Legendre quadrature weights for N = 40")
plot([i for i in 1:50], Gaussian_weights(50),"x",label="Gauss-Legendre quadrature weights for N = 50")
plot([i for i in 1:60], Gaussian_weights(60),"+",label="Gauss-Legendre quadrature weights for N = 60")
legend();
ylabel("Magnitude of weights");
title("Magnitude of Gauss-Legendre quadrature weights for N=40,50,60");

10

Gauss-Legendre weights for N=40: [0.00452128, 0.0104983, 0.016455, 0.00525662, 9.36748e-7, 4.24951e-10, 9.8906e-13, 7.92536e-15, 1.71569e-16, 8.55044e-18, 8.80625e-19, 1.74438e-19, 6.36333e-20, 4.20734e-20, 5.14645e-20, 1.28016e-19, 9.30014e-19, 8.60171e-16, 1.03021e-17, 4.8897e-17, 4.8897e-17, 1.03021e-17, 8.60171e-16, 9.30014e-19, 0.00452128, 0.0104983, 0.016455, 0.00525662, 9.36748e-7, 4.24951e-10, 9.8906e-13, 7.92536e-15, 1.71569e-16, 8.55044e-18, 1.28016e-19, 8.80625e-19, 1.74438e-19, 5.14645e-20, 6.36333e-20, 4.20734e-20]

Only the first 4 weights computed by the function are precise and the rest of them are
zero, or very close to zero. This phenomenon is actually due to the repeated evaluations
of high-order Legendre polynomials which are computed using Julia’s imprecise binom
function. In fact, the Gaussian weights function provided in the lecture notes fares worse
than the function being used for this implementation:

In [77]: #Weights function provided in the lecture notes

function weights_matrix(N, x)
""" Construct the matrix B with entries
B_{ij} = Q_i(x_j)
"""
Q = [legendre(n) for n=0:N-1]

[Q[i](x[j]) for i=1:length(Q), j=1:length(x)]
end

N = 20
xn = LinRange(-1, 1, N)

11

W = weights_matrix(N, xn)

rhs
b = zeros(N)
b[1] = 2.0

print("Gauss-Legendre quadrature weights for N=20: ",W \ b)

Gauss-Legendre quadrature weights for N=20: [0.0256708, 0.22449, -0.344679, 1.5997, -3.84667, 8.3066, -13.1394, 16.3335, -13.7926, 5.63345, 5.63345, -13.7926, 16.3335, -13.1394, 8.3066, -3.84667, 1.5997, -0.344679, 0.22449, 0.0256708]

The method given in the lecture notes involves evaluating all of the first N− 1 Legen-
dre polynomials N times. Evaluating an Nth order Legendre polynomial calls the binom
function N times, so evaluating all N− 1 polynomials, each N times, calls the binom func-
tion O(N3) times. This can cause errors to add up. The formula found in Abramovitz
and Stegun gives the following formula for evaluating the weights:

wi =
2(1− x2)

(NPN−1(xi))2

Here xi is the ith root of the Nth order Legendre Polynomial. This formula brings
down the number of evaluations to N, which we were already making in the previous
algorithm. Such an implementation has brought up the accuracy to N = 35, but for
N ≥ 36, the same issues arise.

There are, of course, better ways to evaluate the Legendre polynomials, found on-
line and at (insert sources). One possible way is to use the derivative definition for the
Legendre polynomials:

Pn(x) =
1
n!

dn

dxn (x2 − 1)

We could use the ForwardDiff.jl package here and compute derivatives recursively to
high precision. For computing n!, we could use either the approximations provided by
the Gamma function or Stirling’s formula. Yet, both approaches leave a lot to be desired
as the Gamma function involves computing a singular integral and Stirling’s formula is
accurate only at large N.

5 Summary

In this project, I explored two applications of weighted quadrature rules: the rectangular
rule’s use in cubature for periodic functions and the Nystrom method for calculating
solutions to Integral equations. In the first application, I observed a convergence rate
for the the rectangular rule that converged exponentially fast for fixed dimension but
worsened exponentially given fixed evaluations and increasing dimension. In the second
application, I compared two implementations of the Nystrom method using Simpson’s
rule and Gauss-Legendre quadrature. In the given example, Simpson’s rule performed

12

better than Gauss-Legendre in terms of the accuracy of the interpolated solution. This
in general is not true: the accuracy of Nystrom’s method depends on the accuracy of
the quadrature rule. Furthermore, the case for N = 40 revealed interesting flaws in the
implementation of the Legendre polynomials.

6 Code Listing

In []: # N-D integration

function rectangular_rule(f, a, b, N)
∆ = (b - a)/N
I = 0.0
for n=0:N-1
I += ∆*f(a + n*∆)
end
return I
end
f(x, y) = (e^sin(x))*cos(x)
f(x,y) = exp(sin(x))*(cos(y))

function nested_rect_2d(f, a, b, N)
inner integral
F(x_1) = rectangular_rule(x_2 -> f(x_1, x_2), a, b, N)
outer integral
return rectangular_rule(F, a, b, N)
end

function nested_rect_3d(f, a, b, N)
inner integral
F(x_1) = nested_rect_2d((x_2,x_3) -> f(x_1, x_2, x_3), a, b, N)
outer integral
return rectangular_rule(F, a, b, N)
end

function nested_rect_4d(f, a, b, N)
inner integral
F(x_1) = nested_rect_3d((x_2,x_3,x_4) -> f(x_1, x_2, x_3, x_4), a, b, N)
outer integral
return rectangular_rule(F, a, b, N)
end

function nested_rect_5d(f, a, b, N)
inner integral
F(x_1) = nested_rect_4d((x_2,x_3,x_4,x_5) -> f(x_1, x_2, x_3, x_4,x_5), a, b, N)

13

outer integral
return rectangular_rule(F, a, b, N)
end

exacts = zeros(5)
exacts[1] = 7.954926521012845274513219665329394328161342771816638573
exacts[2] = exacts[1]*π
exacts[3] = exacts[2]*(-π/2)
exacts[4] = exacts[3]*9π
exacts[5] = exacts[4]*-14.2381118281924317514385064318884000965556815705668502
approxs = zeros(5)

f1(x) = exp(sin(x))
approxs[1] = rectangular_rule(f1, 0, 2*pi, 1000)

f2(x,y) = exp(sin(x))*(cos(y))^2
approxs[2] = nested_rect_2d(f2, 0, 2*pi, 32)

f3(x,y,z) = exp(sin(x))*((cos(y))^2)*(2*(sin(z))^4 - 1)
approxs[3] = nested_rect_3d(f3, 0, 2*π, 10)
7.954926521012845274513219665329394328161342771816638573 * (-pi/2) * pi

f4(x,y,z,w) = exp(sin(x))*((cos(y))^2)*(2*(sin(z))^4 - 1)*(9*(cos(w))^2)
approxs[4] = nested_rect_4d(f4,0,2*π, 6)
#7.954926521012845274513219665329394328161342771816638573 * (-π/2) *π* 9π

f5(x,y,z,w,a) = exp(sin(x))*((cos(y))^2)*(2*(sin(z))^4 - 1)*(9*(cos(w))^2)*((sin(a))^5 - exp(cos(a)) - 1)
approxs[5] = nested_rect_5d(f5, 0, 2*π, 4)
#7.954926521012845274513219665329394328161342771816638573 * (-π/2) *π* 9π-14.238111828192431751438506431888400096555

#Nystrom's method

function simpson_matrix(N,a,b,K,samples)

S = zeros(2*N + 1, 2*N + 1)
h = (b-a)/(2*N)
for i in 1:2*N + 1

if i == 1
S[i,i] = (1/3)*h
elseif i == 2*N + 1
S[i,i] = (1/3)*h
elseif i%2 == 0
S[i,i] = (1/3)*4*h
else
S[i,i] = (1/3)*2*h

14

end

end

Kmatrix = zeros(2*N + 1, 2*N + 1)
for i in 1:2*N + 1

for j in 1:2*N + 1
Kmatrix[i,j] = K(samples[i],samples[j])

end
end

return Kmatrix*S
end

function solution(t,weights,F,K,g,samples,λ)
sols = 0.0
for i in 1:size(F)[1]

sols = sols + weights[i]*K(t,samples[i])*F[i]
end
return λ*sols + g(t)

end

K(x,y) = (x+1)*exp(-x*y)
g(x) = exp(-x) - (1/2) + (1/2)*exp(-(x+1))

N = 10
samples = LinRange(0,1,2*N + 1)
λ = (1/2)
a = 0
b = 1
G = g.(samples)
Kmat = simpson_matrix(N,0,1,K,samples) #compute matrix
Id = zeros(2*N + 1, 2*N + 1) + I
M = (Id - λ*Kmat)
F = M \ G

S = zeros(2*N + 1, 2*N + 1)
h = (b-a)/(2*N)
for i in 1:2*N + 1

if i == 1
S[i,i] = (1/3)*h
elseif i == 2*N + 1
S[i,i] = (1/3)*h

15

elseif i%2 == 0
S[i,i] = (1/3)*4*h
else
S[i,i] = (1/3)*2*h

end

end

weights = zeros(2*N + 1)
for i in 1:size(weights)[1]

weights[i] = S[i,i]
end

s(t) = solution(t,weights,F,K,g,samples,λ)
#zeros(2*10 + 1, 2*10 + 1)

figure()

function legendre(n)
""" Use explicit formula to evaluate Legendre Polynomial P_n
"""
function Pn(x)

f = 0.0
for k=0:n

f += 2.0^(-n) * binomial(n, k)^2 * (x - 1)^(n - k) * (x + 1)^k
end
return f

end
end

#function weights_matrix(N, x)
""" Construct the matrix B with entries
B_{ij} = Q_i(x_j)
"""
Q = [legendre(n) for n=0:N-1]

[Q[i](x[j]) for i=1:length(Q), j=1:length(x)]
#end

α(n) = n/(2n+1)
β(n) = 0
γ(n) = (n+1)/(2n+1)

construct matrix
A(N) = diagm(0 => β.(0:N-1),

16

1 => γ.(0:N-2),
-1 => α.(1:N-1))

weight matrix for Gaussian samples
function Gaussian_weights(N)

A_N = A(N)
xn = sort(eigvals(A_N)) # roots of Q_N(x)

Q = legendre(N-1)
w = 2 .*(1 .- (xn).^2)./((N*Q.(xn)).^2)

return w
end

K(x,y) = (x+1)*exp(-x*y)
g(x) = exp(-x) - (1/2) + (1/2)*exp(-(x+1))
Kprime(t,u) = K(t,(u+1)/2)
λ = (1/2)
N = 20
A_N = A(N)
Gsamples = sort(eigvals(A_N))
tis = (Gsamples .+ 1)./2
Gweights = Gaussian_weights(N)
GaussMatrix = zeros(N,N)
for i in 1:N

for j in 1:N
GaussMatrix[i,j] = (λ/2)*Kprime(tis[i],Gsamples[j])*Gweights[j]

end
end

#WeightMatrix = diagm(0 => Gweights)

Id = zeros(N,N) + I

Solver = Id - GaussMatrix

Points = Solver \ g.(tis)

function sols(t,Gweights,Points,Kprime,g,samples,λ)
sum = 0.0

17

for i in 1:size(Points)[1]
sum = sum + Gweights[i]*Kprime(t,samples[i])*Points[i]

end
return (λ/2)*sum + g(t)

end

interpolation(t) = sols(t,Gweights,Points,Kprime,g,Gsamples,λ)

References

[Lin85] Peter Linz. Analytical and Numerical methods for Volterra Equations. SIAM: Stud-
ies in Applied Mathematics, 1985.

[Hen11] Floris Takens Henrik Broer. Dynamical Systems and Chaos. Springer-Verlag New
York, 2011.

18

	Introduction
	Cubature
	The N-dimensional Paley-Wiener theorem and the rectangular rule

	Integral equations
	Nyström's method for Fredholm equations of the second kind
	Summary
	Code Listing

