Chebyshev and Sobolev Orthogonal Polynomials on the Sierpinski Gasket

Max Jiang, Tian Lan, Shashank Sule, Sreeram Venkat, and Xiaoduo Wang
Advisors: Robert Strichartz and Kasso Okoudjou

Introduction

We define a Sobolev inner product on the Sierpinski Gasket (SG) and discuss the properties of the corresponding orthogonal polynomials such as recurrence inner product. Furthermore, we define the Chebyshev polynomials on SG and find the first two Chebyshev polynomials in each monomial family.

Preliminaries

- Let $V_{0}=\left\{q_{0}, q_{1}, q_{2}\right\} \in \mathbb{R}^{2}$ and $F_{i}(x)=\frac{1}{2}\left(x+q_{i}\right)$ for $i=0,1,2$.

$$
S G=\overline{\bigcup_{m=1}^{\infty} \bigcup_{|w|=m} F_{w}\left(V_{0}\right)}
$$

Here $|w|=m \Longleftrightarrow w \in\{0,1,2\}^{m}$ and $F_{w}=F_{i_{m}} \circ \cdots \circ F_{i_{1}}$ where $w=i_{m} \ldots i_{1}$
-We work on the finite graph approximation $V_{m}=\bigcup_{|w|=m} F_{w}\left(V_{0}\right)$

Figure 1: V_{4}
Let $u: S G \mapsto \mathbb{R}$. Then the Laplacian Δ_{μ} is defined as

$$
\Delta_{\mu} u(x)=\frac{3}{2} \lim _{m \rightarrow \infty} 5^{m} \Delta_{m} u(x)
$$

$G: S G \times S G \mapsto R$ is called Green's Function where

$$
-\Delta u=f,\left.u\right|_{V_{0}}=0 \Longleftrightarrow u(x)=\int_{S G} G(x, y) f(y) d \mu
$$

- The space of polynomials with degree $\leq j$ is denoted \mathcal{H}_{j}
- We use the following basis $\left\{P_{j k}\right\}$ for \mathcal{H}_{m} where $0 \leq j \leq m$ and $k=1,2,3$:

$$
\begin{aligned}
\Delta^{n} P_{j k}\left(q_{0}\right) & =\delta_{n j} \delta_{k 1} \\
\Delta^{n} \partial_{n} P_{j k}\left(q_{0}\right) & =\delta_{n j} \delta_{k 2} \\
\Delta^{n} \partial_{T} P_{j k}\left(q_{0}\right) & =\delta_{n j} \delta_{k 3}
\end{aligned}
$$

This is known as the monomial basis.
Let f and g be polynomials on $S G$. Then the Generalized Sobolev Inner Product is defined as follows:

$$
\langle f, g\rangle_{H^{m}}=\sum_{l=0}^{m} \lambda_{l} \int_{S G} \Delta^{l} f \Delta^{l} g d \mu+\sum_{l=0}^{m-1} \beta_{l} \varepsilon\left(\Delta^{l} f, \Delta^{l} g\right)+
$$

$$
\sum_{l=0}^{m-1}\left[\Delta^{l} f\left(q_{0}\right) \Delta^{l} f\left(q_{1}\right) \Delta^{l} f\left(q_{2}\right)\right] M_{l}\left[\Delta^{l} g\left(q_{0}\right) \Delta^{l} g\left(q_{1}\right) \Delta^{l} g\left(q_{2}\right)\right]^{T}
$$

Here $\lambda_{l}, \beta_{l}>0$ and M is a 3×3 symmetric positive definite matrix. For most of our results we use the H^{1} inner product where $m=1$ and $M=0$. - Fix $k=1,2$ or 3 and let $M_{n k}=\left\{f \mid f=\sum_{j=0}^{n} a_{j} P_{j k}, a_{n}=1\right\}$. Then the that that

$$
g:=\min _{f \in M_{M k}}\|f\|_{\infty}
$$

Experimental Results and Applications

D_{5}

Further Research

1. Interpolation and Quadrature: For which points $x_{1}, \ldots x_{3 n+3}$ is the ma
trix M_{n} where

$$
M_{n}=\left[\begin{array}{ccc}
P_{0,1}\left(x_{1}\right) & \ldots & P_{n, 3}\left(x_{1}\right) \\
\vdots & \ldots & \vdots \\
P_{0,1}\left(x_{3 n+3}\right) & \ldots & P_{n, 3}\left(x_{3 n+3}\right)
\end{array}\right]
$$

invertible? We call M_{n} the interpolation matrix and the above problem arises when we attempt to interpolate an matrix and the above problem distinct points. We have the following lemma:
Lemma 1. For any $n \geq 0$, take $x_{i}=F^{(i-1)}\left(q_{1}\right)$ for $1 \leq i \leq 2 n+2$, $x_{i}=F_{0}^{(i-2 n-3)}\left(q_{2}\right)$ for $2 n+3 \leq i \leq 3 n+3$. Then the matrix (??) is invertible.
On the other hand, S_{14} has at least 22 zeroes on the left half of $S G$ so if we picked x_{1}, \ldots, x_{15} to be any 15 of these points then M_{14} would not be
invertible. Thus the next question is to characterise those ses for which M_{n} is invertible. But due to the above lemma we have a quadrature rule I^{m} that integrates n-harmonic splines exactly. We have the following estimate for the error:

$$
\left|I_{n}^{m}(f)-\int_{S G} f\right| \leq c_{1}(n) 5^{-(n+1) m}\left\|\Delta^{(n+1)} f\right\|_{\infty}
$$

2. Normal derivative conjecture: Let $f_{t}=-\int_{S G} G(x, y) p_{t-1} d x$ where p_{t-1} is the $t-1$ th Legendre polynomial from the $k=1$ family. Is $\partial_{n} f_{t}\left(q_{0}\right) \neq$ 0 ? Values of $\partial_{n} f_{t}\left(q_{0}\right) \neq 0$ have been verified up to $t=120$. We require th conjecture for the recurrence relation in the $k=1$ case
Computing higher degree Chebyshev polynomials: For the $2^{\text {nd }}$ Cheby
shev polynomials of the families $k=2$ and 3 we can numerically find thy shev polynomials of the families $k=2$ and3, we can numerically find that
$a_{2}=0.0619339$ and $a_{3}=0.0275013$. However, the general form of Cheby$a_{2}=0.019339$ and $a_{3}=0.0275013$. However, the general form of Che an
shev polynomials and their properties such as orthogonality, recursion, and alternation are still unexplored. [2], [3], [4], [6], [5], [1]

References

[1] Kyallee Dalrymple, Robert S. Strichartz, and Jade P. Vinson. Fractal dif ferential equations on the sierpinski gasket. Journal of Fourier Analysis and Applications, 5:203-284, 1999.
[2] Francisco Marcellan and Yuan Xu. On sobolev orthogonal polynomials. Ex positiones Mathematicae, 33(3):308-352, 2015
[3] Jonathan Needleman, Robert S Strichartz, Alexander Teplyaev, and Po-Lam Yung. Calculus on the sierpinski gasket i: polynomials, exponentials and pow series. Journal of Functional Analysis, 215(2):290-340, 2004.
[4] Kasso A. Okoudjou, Robert S. Strichartz, and Elizabeth K. Tuley. Orthogon polynomials on the sierpinski gasket. Constructive Approximation, 37(3):311340, Jun 2013
[5] Robert S. Strichartz.
[6] ROBERT S. STRICHARTZ and MICHAEL USHER. Splines on fractals. Mathematical Proceedings of the Cambridge Philosophical Society 129(2):331360, 2000.

We thank our advisors, Kasso Okoudjou and Robert Strichartz for introducing us to Analysis on Fractals and for their encouragement throughout. We also erpl gratitude towards the Cornell SUR 2019 and PIRP programs Cornell University for supporting our work.

and $\lim _{\lambda_{m} \rightarrow \infty}\left\|\Delta^{i} S_{n}-\mathcal{G}^{m-i} p_{n-m}\right\|_{L^{\infty}} \rightarrow 0$ for any $0 \leq i \leq m$
Theorem. Suppose the normal derivative conjecture is true and $k=1$. The there exists a sequence of monic polynomials $\left\{g_{n}\right\}_{n=0}^{\infty}$ independent of λ such that for any $n \geq 0, \operatorname{deg} g_{n}=n, S_{n}$ converges uniformly in x to g_{n}. And
$g_{n+3}+d_{n} g_{n+2}=f_{n+3}+d_{n} f_{n+2}$ for any $n \geq 1$. For the basic cases, $g_{0}=p_{0}, g_{1}=p_{1}, g_{2}+d_{-1} g_{1}=f_{2}+d_{-1} f_{1}-\frac{\left\langle f_{2}+d_{-1} f_{1}, g_{0} \nu_{2} g_{0}\right.}{\left\|g_{0}\right\|_{2}}$, and
$g_{3}+d_{0} g_{2}=f_{3}+d_{0} f_{2}-\frac{\left\langle f_{3}+d_{0} f_{2}, g_{0}\right\rangle_{L^{2}}}{\left\|g_{0}\right\|_{L_{2}}} g_{0}$. Moreover, for any $\alpha<1, n \geq 0$ $\lim _{\rightarrow \rightarrow \infty} \lambda^{\alpha}\left(S_{n}(\lambda)-g_{n}\right)=0$ uniformly in x

$$
\begin{aligned}
& \text { re given as follows: } \\
& \qquad \begin{array}{c}
a_{n}=-\frac{\left\langle f_{n+3}+d_{n} f_{n+2}, S_{n+2}\right\rangle_{H}}{\left\|S_{n+2}\right\|_{H}^{2}} \\
b_{n}=-\frac{\left\langle f_{n+3}+d_{n} f_{n+2}, S_{n+1}\right\rangle_{H}}{\left\|S_{n+1}\right\|_{H}^{2}} \\
d_{n}=-\frac{\partial_{n} f_{n+3}\left(q_{0}\right)}{\partial_{n} f_{n+2}\left(q_{0}\right)}, \quad c_{n}=-d_{n} \frac{\left\|p_{n+1}\right\|_{L^{2}}^{2}}{\left\|S_{n}\right\|_{H}^{2}}
\end{array} .
\end{aligned}
$$

Convergence properties
Theorem. Suppose $k=2$ or 3 , and there exists $M>0$ such that $\lambda_{l} \leq M$ for any $<m$. Then there exists positive constants $C_{1}=C_{1}(n, \mu), C_{2}=C_{2}(n, \mu, M, m)$ such that for any $n \geq 0$,

$$
C_{2} \geq \sum_{l=0}^{m-1} \lambda_{l} \int_{S G}\left(\Delta^{l} S_{n}\right)^{2} d \mu \geq C_{1}
$$

$$
C_{2}+\lambda_{m}\left\|p_{n-m}\right\|_{L^{2}}^{2} \geq\left\|S_{n}\right\|_{H^{m}}^{2} \geq C_{1}+\lambda_{m}\left\|p_{n-m}\right\|_{L^{3}}^{2}
$$

Consequently, for any $n \geq 2 m+1$, we have

$$
\left\|S_{n}-\mathcal{F}_{n}\right\|_{L^{2}} \leq C(n, M, m, \mu) \lambda_{m}^{-1}
$$

 $\delta_{n} f_{n+2}\left(q_{0}\right) \neq 0$. Let $n \geq-1$. The Sobolev orthogonal polynomials satisfy the

$$
\begin{gathered}
\text { urrence reation: } \\
S_{n+3}-a_{n} S_{n+}
\end{gathered}
$$

