
Introduction
Attributing human-understandable explanations for the workings of

a neural network is an active problem in deep learning. In [1] this

problem is addressed through Descrambling Transformations.

Descrambling proceeds as follows: fix input data X and wiretap the

network output F at the kth layer with a matrix P = ρ(g) where ρ is

representation of the descrambler group G:

F = σWm · · · σP−1P Wk · · ·W1X
︸ ︷︷ ︸

fk(X)

(1)

Then P is computed such that PWk is an interpretation of Wk.

Smoothness criterion descrambling is defined as computing P to

promote smoothness of the intermediate data over G = SO(d). Fix-

ing D as a differentiation stencil, we write P as

P = argmin ‖DQ fk(X)‖2
F w.r.t Q⊤Q = I (2)

We characterize the properties of the minimizers in (2) and give

three applications to deep learning in inverse problems.

Main Result
1. Let X be a random d × N matrix of N samples drawn from

x = s(z) + αy (3)

where s is a signal of a parameter z distributed independently from
a zero mean noise vector y with an isotropic density.

2. Let UJ be the left SVD of J fk(X) where X := E[X] and J is the
Jacobian of fk defined in (1).

3. Let T be the m×m matrix such that every kth column has lth entry
tk(l) given by

tk(l) =

{

cos πlk
m k even

sin πl(k+1)
m k odd

(4)

4. Let Tr the submatrix of T given by picking the first r columns.

Let P be defined as (2). Then we have that

‖PUJ − Tr‖F ≤ K(d)√
N

+ C(α, d)‖UJ‖F (5)

Here |C(α, d)| → 0 as α → ∞. Furthermore, we obtain a number of
simplifications when k = 1:

1. If s ≡ K then C(α, d) = 0. In this case

lim
N→∞

P = TrU
⊤
1 (6)

2. In general for k = 1, P →

argmin
Q⊤Q=I

E
[
‖DQW1s(z)‖2

2 + α2‖DPW1y‖2
2

]
(7)

Application 1: Explaining DEERNet
DEERNet [2] is a fully-connected NN for solving the inverse problem of recovering p from the noisy measurements of Γ in deep electron-

electron resonance (DEER):

Γ(t) =
∫

Ω

p(r)γ(r, t) dx + ξ, γ(r, t) :=

√

πr3

6t

[

cos[tr−3]C

[√

6t

πr3

]

+ sin[tr−3]S

[√

6t

πr3

]]

(8)

Here S and C are Fresnel Integrals. We present a descrambling analysis of DEERNet mirroring [1]. A potential advantage of descram-

bling over the SVD is the signal term in (7); however, this may render the descrambler analysis dependent upon specific data rather

than just the NN itself. However, the SVD analysis shows that this is not the case since the network also learns copies of the data.

Figure 1: We visualize the 2-D FFT’s of PW1
where W1 is the first weight matrix of the
DEERNet [2] and P is computed from (2).
Left: Amey et al. show that the descram-
bled first weight matrix DEERNet contains
a notch filter and a bandpass filter on the
Fourier Domain. Right Visualizing the 2-D
DFT of the first weight matrix descrambled
with noise recovers the bandpass filter but
not the notch.

Figure 2: Left: The notch filter from Fig-
ure 1 vaguely corresponds to the cubic time-
distance conversion in (8). Right: We show
that this is much better inferred by directly
looking at Fourier Transform of the right sin-
gular vectors of the weights.

Figure 3: Figure 4 from [1]: Right sin-
gular vectors of the second weight matrix
after descrambling are approximately sinu-
soidal. This is predicted by (5), which shows
that the singular vectors on the descrambled
side are close to an oscillating basis.

Application 2: When learning happens in the SVD
Figure 2 suggests that the singular vectors of the weights of a network can hold interpretable properties. We test and confirm this

hypothesis on two classes of networks from magnetic resonance relaxometry [3] that solve a non-linear problem of recovering the rate

parameters (T2,1, T2,2) from noisy samples of a biexponential curve 0.6 exp (−t/T2,1) + 0.4 exp (−t/T2,2). In this case, the (ND, Reg)

class is trained on a concatenation of noisy and smooth data (top rightmost column, Figure 4) and the (ND, ND) class is trained on a

concatenation of two copies of noisy data (bottom rightmost column, Figure 4).
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Figure 4: We find that the first layers weights of networks trained to process biexponential data exhibit biexponential singular vectors. Here n is the nth singular
vector and SNR is α−2 from (7).

Application 3: Limitations of
descrambling

We highlight two applications where the descrambling interpretation

reveals information already available to us:

Corollary (CNN’s). In the main result, let x admit a zero-mean

isotropic density and set k = 1. Suppose f is a 1-D convolutional

neural network with stride 1. Then PW → W so descrambling

does nothing to the weight matrix.

Corollary (oscillatory data analysis). Let z ∼ Unif[−uN, vN] for

u, v ∈ Z and s(z) = (exp 2πikT/N)N−1
k=0

. Then P → TrU
⊤ where

Tr is the trigonometric basis from the main result and U is the

left SVD of the weight W. In this case, descrambling reveals

information already available via the SVD.

Conclusions and Further Work
• Descrambling transformations interact with the SVD of the Jaco-

bian of the network when trained on noisy samples of a smooth

signal.

• Descramblers computed on highly noisy data reveal exactly the

information available in the SVD. Moreover, descramblers P can

represent artefacts of the data which may have nothing to do with

the network.

• However, we find that this is not the case for two networks trained

to solve the inverse problem of signal recovery. In fact, the net-

works themselves learn forms of the data in the right singular vec-

tors.

• SVD’s have been used for network compression and deep inter-

pretation [4]. But singular vector learning of training data and its

relationship to generalization is an unexplained phenomenon and

is a current research direction.
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