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Introduction

Target Measure Diffusion Maps (TMD Maps) is a non-linear dimensionality reduction tech-
nique where a dataset X ¢ M drawn from a sampling measure dq is normalized to approx-
imate the generator £ of an SDE admitting a “target” invariant measure du. In this work we
use a prefactor analysis to justify using a quasi-uniform sampling density to reduce the
pointwise error between the approximate generator L., and the Fokker-Planck operator
£ in the case when M = R%, We confirm this fact using numerical experiments on elliptic
boundary value problems arising in Transition Path Theory.

Target Measure Diffusion Maps: Algorithm

Goal: Approximate infinitesimal generator £ for the time-reversible dynamics governed by

the SDE
dX, = —=VV(z)dt + /26~ dW (1)
We recall that the generator is given by
L=08T'"A-VV.V. (2)
Input: Dataset X ¢ R? ~ dq, target measure ., kernel bandwidth ¢, and kernel matrix

[Ke]ij — €XP (6_1||$7; —

Step 1 (Kernel Density estimation): VM = diag([u(z;)],,cx), De = (1/N)diag(Kc1).
that [D¢]; — qe(x;) where

zi|l5) = ke(ai, x;) (3)

Note

e) = [ il ylalu)dy @

Step 2 (Renormalization): k., = K.D-'M'/2. Here we define

Cond @) = | hesle)f@aln)dy 5)

Step 3 (Markov Process): D, = (1/N)diag(K 1), P, = D; ;K. . Define

Kepf(2)
K. 1) (6)

NI - P.). Let

Peuf(x) =

Step 4/Output (Generator): L., = ¢~

»Ce,uf(x) — 6_177€7Mf(33) — f(x) (7)

Banisch et al. [1] prove that the generator L. ,,f — Lf. We refine this result in Theorem 1
by computing the rate of convergence.

Transition Path Theory

Transition Path Theory (TPT) aims to study the rare events associated with systems ob-
serving dynamics according to Equation 1. In particular let A, B c 2 be disjoint subsets of
a state space and let the forward comittor function u(x) be the probability that X; enters B
before A such that X (0) = z. Then Vanden-Eijnden et al. [2] show that « satisfies

Lu =0, u |gp= 1 (8)
TMD maps can be used as a meshless algorithm for numerically solving the elliptic
BVP (8) since L. , is a discrete approximation to £. Consequently it is important to study

the (pointwise) error rate for [Le ,.f — Lf(z)] as € — 0 and |X¥| — oo
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Error Analysis: Theory

Fix = € R?, assume the point cloud X C RY(N := |.X|) has been sampled through a measure
dg = gdz with density ¢. Let f € C®(R%) , V : R? — R a coercive potential, and du = pdx
be the target measure with density .. Note that L. , f(z) — Lc , f(z) and Le¢ . f(z) = Lf(x).
The approximation error with respect to NV is the Variance Error and with respect to ¢ is the
Bias Error.

(Theorem 1 (Bias Error). Fix a sampling density ¢, target density ;. and let
SEODECTEEE IR E
— 8x2(’9:1;]

Ryaf = Q(fu?) = 1A (fu1/2%> + fut (i (ﬁ) Qf;”) .

Then we have the following error formula:
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(
Theorem 2 (Variance error). Let

Ap'’? Ag
ptzo g

t([l?) L= S(Qj) —

0= HV(u/0)- Y+ /2] VI3

Then, letting p(N, a) := P(|Le uf(x) — Le juf ()] > o),

(me)*(N — 1)a’(p + es(x) + O(€))
2¢(t(x) + O(e))

Theorems 1 and 2 can be used to show that the BVP (8) is a rather good problem to
solve using TMD maps when ¢(z) = C on Q C R? In particular, we can improve the
variance error by /e and kill a whole term in the bias error:

p(N,a) < 2exp

(9)

Consequently, |L¢ ,f(z) — L, f (x))]

-
Corollary. Borrowing all notation from Theorems 1 2, let ¢(x)

have the following approximation rate:

= C for x € Q). Then we

/2 ¢ _Q(f,ul/z Q’ul/Z_
_Lf(x):O(m)JrZ AT

(10)

AL, f (x)

Proof. The estimate follows by noting that when £f = 0 and Aq = 0, the second O(e)
term in the bias error formula is zero. Furthermore, when ¢ is locally constant, ¢(z) ~ 0
because Vf =~ 0 around the regions A and B. . ]

Error Analysis: Numerics

We the committor problem numerically using TMD Maps by solving L. ,u = 0 such that
u(l4) =0and u(lg) =1 where 4 and I are indices of points in X’ that intersect with A and
B respectively. We visualize the RMS error between « and a FEM-computed ground truth
value «* as a function of kernel bandwidth ¢ for two 2-dimensional choices of V: Muller’s
Potential and Two well Potential. In both cases we use two choices of ¢:

* By sampling the SDE 1 through the Euler-Maruyama method (this is equivalent to sam-
pling by the Gibbs density aexp —5V (x))

* By sampling the SDE using Euler-Maruyama with modifications through well-tempered
metadynamics, which periodically modifies the density of sampling in Euler-Maruyama.
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Figure 1: Sample datasets X for Muller’s Potential (Left) and Twowell Potential (right). Note how in each
case sampling by the Gibbs measure leaves the transition region underresolved. Metadynamics sampling
IS In general much better at covering these regions, but it leads to a different sampling density ¢q. These
datasets have also been uniformized by the §-nets where we greedily delete a ball of size 4 around each
point.
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Figure 2: RMS error performance on the uniformizations of the Metadynamics-sampled datasets on Muller’s
Potential (Left) and Twowell Potential (right). Note that uniformization decreases minimum RMS error over ¢
and increases the region of sensitivity of error to e. These two phenomena are predicted by our Theorems 1
and 2: the improved minimum error is due to smaller bias error and the flatter basin of sensitivity is due to
reduced variance error by a factor of e when ¢ < 1.
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