
Introduction
Target Measure Diffusion Maps (TMD Maps) is a non-linear dimensionality reduction tech-

nique where a dataset X ⊂ M drawn from a sampling measure dq is normalized to approx-

imate the generator L of an SDE admitting a “target" invariant measure dµ. In this work we

use a prefactor analysis to justify using a quasi-uniform sampling density to reduce the

pointwise error between the approximate generator Lǫ,µ and the Fokker-Planck operator

L in the case when M = R
d. We confirm this fact using numerical experiments on elliptic

boundary value problems arising in Transition Path Theory.

Target Measure Diffusion Maps: Algorithm
Goal: Approximate infinitesimal generator L for the time-reversible dynamics governed by
the SDE

dXt = −∇V (x)dt +
√

2β−1dW (1)
We recall that the generator is given by

L = β−1∆−∇V · ∇. (2)

Input: Dataset X ⊂ R
d ∼ dq, target measure µ, kernel bandwidth ǫ, and kernel matrix

[Kǫ]ij = exp (ǫ−1‖xi − xj‖22) := kǫ(xi, xj) (3)

Step 1 (Kernel Density estimation): M = diag([µ(xi)]xi∈X ), Dǫ = (1/N)diag(Kǫ1). Note
that [Dǫ]i → qǫ(xi) where

qǫ(x) :=

∫

Rd

kǫ(x, y)q(y)dy (4)

Step 2 (Renormalization): Kǫ,µ = KǫD
−1
ǫ M1/2. Here we define

Kǫ,µf (x) =

∫

Rd

kǫ,µ(x, y)f (y)q(y)dy (5)

Step 3 (Markov Process): Dǫ,µ = (1/N)diag(Kǫ,µ1), Pǫ,µ = D−1
ǫ,µKǫ,µ. Define

Pǫ,µf (x) =
Kǫ,µf (x)

Kǫ,µ1(x)
(6)

Step 4/Output (Generator): Lǫ,µ = ǫ−1(I − Pǫ,µ). Let

Lǫ,µf (x) = ǫ−1Pǫ,µf (x)− f (x) (7)

Banisch et al. [1] prove that the generator Lǫ,µf → Lf . We refine this result in Theorem 1
by computing the rate of convergence.

Transition Path Theory
Transition Path Theory (TPT) aims to study the rare events associated with systems ob-

serving dynamics according to Equation 1. In particular let A,B ⊂ Ω be disjoint subsets of

a state space and let the forward comittor function u(x) be the probability that Xt enters B

before A such that X(0) = x. Then Vanden-Eijnden et al. [2] show that u satisfies

Lu = 0, u |∂A= 0, u |∂B= 1 (8)

TMD maps can be used as a meshless algorithm for numerically solving the elliptic

BVP (8) since Lǫ,µ is a discrete approximation to L. Consequently it is important to study

the (pointwise) error rate for |Lǫ,µf − Lf (x)| as ǫ → 0 and |X | → ∞

Error Analysis: Theory
Fix x ∈ R

d, assume the point cloud X ⊆ R
d(N := |X |) has been sampled through a measure

dq = qdx with density q. Let f ∈ C∞(Rd) , V : Rd → R a coercive potential, and dµ = µdx

be the target measure with density µ. Note that Lǫ,µf (x) → Lǫ,µf (x) and Lǫ,µf (x) → Lf (x).
The approximation error with respect to N is the Variance Error and with respect to ǫ is the

Bias Error.

Theorem 1 (Bias Error). Fix a sampling density q, target density µ and let

Q(f ) := 2
∑

i<j

∂4f (x)

∂x2i∂x
2
j

+ 3
∑

i

∂4f (x)

∂x4i

Rµ,qf := Q
(

fµ1/2
)

− 1

4
∆

(

fµ1/2∆q

q

)

+ fµ1/2

(

1

4

(

∆q

q

)2

− Q(q)

q

)

.

Then we have the following error formula:

Lµ,ε −
1

4
L =

ǫ

4

[Rµ,qf

µ1/2
− f

Rµ,q1

µ1/2

]

+
ǫ

16

(

f

[

∆(µ1/2)

µ1/2
− ∆q

q

]2

−
[

∆(µ1/2f )

µ1/2
− f

∆q

q

][

∆(µ1/2)

µ1/2
− ∆q

q

])

+O(ǫ2)

Theorem 2 (Variance error). Let

t(x) :=
1

2
(1− f )∇(µ/q) · ∇f +

1

4
(µ/q)|∇f‖22, s(x) :=

∆µ1/2

µ1/2
− ∆q

q

Then, letting p(N,α) := P (|Lǫ,µf (x)− Lǫ,µf (x)| > α),

p(N,α) ≤ 2 exp−(πǫ)d/2(N − 1)α2(µ + ǫs(x) +O(ǫ2))

2ǫ(t(x) +O(ǫ))
(9)

Consequently, |Lǫ,µf (x)− Lǫ,µf (x)| = O
(

ǫ−(1/2+d/2)√
N

)

Theorems 1 and 2 can be used to show that the BVP (8) is a rather good problem to

solve using TMD maps when q(x) ≡ C on Ω ⊆ R
d. In particular, we can improve the

variance error by
√
ǫ and kill a whole term in the bias error:

Corollary. Borrowing all notation from Theorems 1 2, let q(x) ≡ C for x ∈ Ω. Then we

have the following approximation rate:

4Lǫ,µf (x)− Lf (x) = O
(ǫ−d/2

√
N

)

+
ǫ

4

[

Q(fµ1/2

µ1/2
− f

Qµ1/2

µ1/2

]

(10)

Proof. The estimate follows by noting that when Lf = 0 and ∆q = 0, the second O(ǫ)

term in the bias error formula is zero. Furthermore, when q is locally constant, t(x) ≈ 0

because ∇f ≈ 0 around the regions A and B. .

Error Analysis: Numerics
We the committor problem numerically using TMD Maps by solving Lǫ,µu = 0 such that

u(IA) = 0 and u(IB) = 1 where IA and IB are indices of points in X that intersect with A and

B respectively. We visualize the RMS error between u and a FEM-computed ground truth

value u∗ as a function of kernel bandwidth ǫ for two 2-dimensional choices of V : Muller’s

Potential and Two well Potential. In both cases we use two choices of q:

• By sampling the SDE 1 through the Euler-Maruyama method (this is equivalent to sam-

pling by the Gibbs density α exp−βV (x))

• By sampling the SDE using Euler-Maruyama with modifications through well-tempered

metadynamics, which periodically modifies the density of sampling in Euler-Maruyama.

Figure 1: Sample datasets X for Muller’s Potential (Left) and Twowell Potential (right). Note how in each
case sampling by the Gibbs measure leaves the transition region underresolved. Metadynamics sampling
is in general much better at covering these regions, but it leads to a different sampling density q. These
datasets have also been uniformized by the δ-nets where we greedily delete a ball of size δ around each
point.

Figure 2: RMS error performance on the uniformizations of the Metadynamics-sampled datasets on Muller’s
Potential (Left) and Twowell Potential (right). Note that uniformization decreases minimum RMS error over ǫ
and increases the region of sensitivity of error to ǫ. These two phenomena are predicted by our Theorems 1
and 2: the improved minimum error is due to smaller bias error and the flatter basin of sensitivity is due to
reduced variance error by a factor of ǫ when ǫ < 1.
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