
ON THE CURVE SHORTENING FLOW

SHASHANK SULE

1. Introduction

A curve γ : S1 ˆ r0, T q ÞÑ R2 where T ą 0 evolves by the curve shortening flow if
γt :“ γp¨, tq is embedded for every t P r0, T q and γ satisfies the following non-linear parabolic
equation for every px, tq P S1 ˆ r0, T q:

Btγpx, tq “ κpx, tqNpx, tq(1.1)

Here κpx, tq is the curvature of γt at x P S1. Usually κpx, tq “ xBxT px, tq, Npx, tqy where
Npx, tq “ JT px, tq (J is the π{2 counter-clockwise rotation matrix in SOp2q and T p¨, tq is
the unit tangent vector of γt). Since γ is embedded, it can be (re)parametrized by arc length
so κpx, tqNpx, tq “ B2

sγps, tq giving a reformulation of Equation 1.1 in terms of arc-length s:

Btγps, tq “ B
2
sγps, tq(1.2)

Equation 1.2 reveals that the curve shortening equation is a heat equation for plane curves.
However, we must remark with caution that the above equation is not linear with respect
to x because arc-length s may depend non-linearly on x. As a result given curves γpx, tq “
γ1px, tq ` γ2px, tq it may not be true that Bsγ “ Bsγ1 ` Bsγ2. For example, Bs is not linear
for a curve given by the (componentwise) addition of parabola to a cubic both parametrized
by x. Another way to see the non-linearity of 1.2 is to check what happens when X is
not parametrized by arc length; in that case we have that Xs “ T pxpsqq “ X 1pxq{|X 1pxq|.

Then according to Equation 1.2, Xss “
B

Bs
Xs “

dT
dx

dx
ds
“ 1

|X 1pxq|
p
X 1pxq
|X 1pxq|

q1 “ Xt, which is clearly

non-linear.
Before embarking on a quest to study the properties of curves which evolve by the curve

shortening flow, it is worth mentioning the “weak” version of Equation 1.1:

xN, Btγpx, tqy “ κpx, tq(1.3)

Equation 1.1 implies Equation 1.3 but the converse is not true. However, Equation 1.3 is
arguably more important for studying the curve shortening flow because for a fixed x P S1,
the trajectory γpx, ¨qq can be parametrized such that it is not orthogonal to γt at every t
without changing Equation 1.2. To see this more clearly, suppose px, tq ÞÑ pϕpx, tq, tq is a
time-dependent reparametrization. Then if we have a curve Y px, tq “ Xpϕpx, tq, tq and X
flows by curve shortening then by the chain rule we have

Ytpx, tq “
1

|Yxpx, tq|

B

Bx
p
Yxpx, tq

|Yxpx, tq|
q ` p

ϕtpx, tq

ϕxpx, tq
qYxpx, tq
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Consequently, a time dependent reparametrization causes Y to pick up a tangential term;
the parametrization can always be reversed to remove that tangential term as long as the
curve evolves by curve shortening in the arc-length parameter.

Thus Equations 1.2 and 1.3 are equivalent up to reparametrization so we will study either
one of the three depending on convenience.

Example 1.1. Suppose γpx, tq “ rptqpcospxq, sinpxqq be a circle of radius rptq ě 0. Then
γxpx, tq “ rptqp´ sinpxq, cosxq and |γxpx, tq| “ |rptq| “ rptq so T px, tq “ γxpx, tq{|γxpx, tq| “
p´ sinpxq, cosxq. Next,

dT

ds
“
dT

dx

dx

ds

“
Txpx, tq

|γxpx, tq|

“
1

|rptq|
p´ cospxq,´ sinpxqq

“
1

|rptq|
Npx, tq “ κpx, tqNpx, tq

Lastly, we have that γtpx, tq “ r1ptqpcospxq, sinpxqq so according to Equation 1.1 we have that

r1ptqpcospxq, sinpxqq “ κpx, tqNpx, tq “
1

|rptq|
p´ cospxq,´ sinpxqq

This implies the ODE r1ptq “ ´1{rptq. Using separation of variables we get that

ż rptq

rp0q

ρ dr “

ż t

0

τ dτ

so 1
2
pprptqq2 ´ prp0qq2q “ ´t. Rearranging, we have that rptq “

a

rp0q ´ 2t. Thus a circle
with initial radius Rp0q ą 0 is always a solution to the curve shortening flow. In fact, since

rptq “
a

prp0qq2 ´ 2t, the flow is only well-defined until time T “ prp0qq2{2 and the radius
shrinks monotonically until γt collapses to a “round point” as tÑ T .

Example 1.2. Can the translations of a graph of a twice-differentiable function be solutions
to the curve shortening flow? Such a solution is called a soliton. Suppose f : R ÞÑ R be a
C2 function where γpx, tq “ px, fpxq ` ctq. Then γtpx, tq “ p0, cq so γtpx, tq “ κpx, tqNpx, tq
is always p0, 1q which means that Γt is a line parallel to the x-axis. Since this answer is
not very interesting, it is worth looking at the solutions to the weak problem. According to
Equation 1.3, given γ : S1 ˆ r0, T q ÞÑ R2 we have that

xNpx, tq, γty “ κpx, tq
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Now, given γpx, tq “ px, fpxq ` ctq, γx “ p1, f 1q so T px, tq “ 1?
1`pf 1q2

p1, f 1q. Then N “

1?
1`pf 1q2

p´f, 1q Moreover

dT

ds
“

1
a

1` pf 1q2

»

–

´ 1
1`pf 1q2

2f 1f2

2
?

1`pf 1q2

f2
?

1`pf 1q2´f 1 2f 1f2

2
?

1`pf 1q2

1`pf 1q2

fi

fl

“
f2

p1` pf 1q2q3{2

»

–

´f 1?
1`pf 1q2

a

1` pf 1q2 ´ pf 1q2?
1`pf 1q2

fi

fl

“
f2

p1` pf 1q2q3{2

»

–

´f 1?
1`pf 1q2

1?
1`pf 1q2

fi

fl

“
f2

p1` pf 1q2q3{2
Npx, tq

Consequently, we get that κpx, tq “ f2

p1`pf 1q2q3{2
. From Equation 1.3 we have that

xγtpx, tq, Npx, tqy “
c

a

1` pf 1q2
“ κpx, tq “

f2

p1` pf 1q2q3{2

Cancelling 1?
p1`pf 1q2q

on both sides, we once again obtain an ODE:

c “
f2

1` pf 1q2
“ parctanpf 1qq1

Consequently, we have that arctanpf 1q “ cx`d. Rearranging we get the ODE f 1 “ tanpcx`dq
which, when given the condition fpx0q has the solution fpxq “ ´1

c
lnpcospcx` dqq ` b. Now,

given this form, f is well-defined whenever ´1
c

lnpcospcx ` dqq is well-defined; consequently,
we restrict cx ` d P p´π{2, π{2q. The Grim Reaper Curve is γ when d “ b “ 0 and c “ 1
well defined for x “ p´π{2, π{2q. In this case, Γt evolves by vertical translations.

Example 1.3. In Example 1.2 the Grim Reaper was derived as a particular solution to
c “ parctanpf 1qq1 for c “ 1 and d “ b “ 0. Consequently, an entire family of curves evolving
by the curve shortening flow can be obtained by setting d, b P R and c ‰ 0. Moreover, the
parameter b only controls the vertical position of the curve in the plane so it can be assumed
that b “ 0 (otherwise, we can translate the y axis by ´b without changing the x axis). We
denote γc,dpx, tq “ px,´1

c
ln cospcx`dq`ctq “ px,´1

c
ln cospMc,dpxqqq`ct where Mc,d “ cx`d

is an isometry of R. The solution γc,d still evolves by translation, but its orientation depends
on the parameters c and d. As a result, the Grim Reaper is a self-similar solution to the
curve shortening flow: it is invariant of orientation and flows by translation. One more way
to see the self-similarity of the Grim Reaper is to consider the implicit formulation of γ1,0

as γ1,0 : S1 ˆ R where γps, tq “ pxps, tq, yps, tqq satisfying e´y “ e´t cospxq. If we assume
that y is once differentiable with respect to x, then we get the Grim Reaper as a solution
by differentiating the functional equation and assuming xtps, tq “ 0. Note that we may
tweak the functional equation to any arbitrary isometry on y and x. Then a translating
Grim Reaper is the solution to e´pay`bq “ e´t cos pcx` dq with the explicit solution given by
y “ ´ 1

a
ln c cospcx` dq ` t´b

a
. Dilating the x-axis by 1{c and the y axis by a and translating



ON THE CURVE SHORTENING FLOW 4

by b we get y “ ln c cospx ` dq ` t, resolving it in the two-parameter form obtained by
solving the ODE for various parameters of c and d. Lastly, the equations e´y “ e´t cospxq
and ey ´ e´t cospxq can actually be combined to get another pair of solutions, the paperclip
coshpyq “ cospxqe´t and the hairclip sinhpyq “ cospxqe´t.

Figure 1. The paperclip (above) and hairclip (below) solutions to the curve
shortening flow

2. Geometric Properties of the Curve Shortening Flow

In this section, we discuss some fundamental geometric properties of solutions to the curve
shortening flow. Before we begin, we remark that most geometric properties of such solutions
can be determined by computing the correct functional of the curve Γt. As a simple example,
we prove that the areas and lengths of solutions to the curve shortening flow. We start by
recalling the definitions of area and length; we assume Γ Ă R2 is a closed embedded curve
of unit length with an arc length parametrization Γ : S1 ÞÑ R such that Γp0q “ Γp1q and
T p0q “ T p1q.
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Definition 2.1. Since Γ is closed, by the Jordan Curve Theorem, it partitions the plane
into an interior Σ and an exterior Σc X Γc. Then the area of Γ is ApΓq “

ş

Σ
dx.

Remark 2.1. Note that ApΓq “ mpΣq where m is the Lebesgue measure on R2.

Definition 2.2. The Length of Γ is the following:

LpΓq “ sup
P

!

ÿ

1ďiďn´1

|Γpti`1q ´ Γptiq|
ˇ

ˇ

ˇ
rti, ti`1s P P , |P | “ n

)

Here P is a partition of S1. Note that since Γ is embedded,

LpΓq “

ż

S1

|Γ1pxq| dx(2.1)

Before we begin investigating the curve shortening flow on Γ we would like to first seek a
formula for area similar to that of LpΓq, explicitly involving the parametrization of Γ. To
that end, since BΣ “ Γ we may use Green’s theorem:

ż

Σ

dx “
1

2

¿

Γ

´y dx` x dy “

¿

Γ

p´y, xq ¨ dpr “
1

2

ż

S1

xJΓ, T y dx(2.2)

With Equations 2.1 and 2.1 in hand, we can start to study how area and length change
with respect to time when Γt flows by curve shortening. Assume for the remainder of the
section that Γ : S1 ˆ r0, T q ÞÑ R2 where Γt “ ΓpS1, tq is a simple closed embedded curve for
every t P r0, 1q and that Γ flows by curve shortening.

Definition 2.3. The first variations of Area and Length are
dApΓtq

dt
and

dLpΓtq

dt
respectively.

Note that when Γt is simple, closed, and embedded, the first variations are well-defined
since Equations 2.1 and 2.1 assure that area and length are C1 with respect to time. The
following calculations reveal a connection with curvature when Γ flows by curve shortening.

Proposition 2.1. Let Γt flow by curve shortening. Then

d

dt
ApΓtq “ ´

ż

S1

κpx, tq dx “ ´2π

Proof.

d

dt
Aptq “

1

2

d

dt

ż

S1

xJΓ, T y dx

“
1

2

d

dt

ż

S1

xJΓt, T y ` xJΓ, Tty dx

“
1

2

ż

S1

xκJN, T y ` xJΓ,Γxty dx

“
1

2

ż

S1

x´κT, T y ´ xJΓx,Γty dx

“
1

2

ż

S1

´κ´ xN, κNy dx

“
1

2

ż

S1

´2κ dx “

ż

S1

κ dx “ ´2π

To obtain the fourth line from the third, we use integration by parts. �
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Proposition 2.2. Let Γt flow by curve shortening. Then

d

dt
LpΓtq “ ´

ż

S1

κpx, tq2 dx

Proof.

d

dt
Lptq “

d

dt

ż

S1

|Γxpx, tq| dx

“
d

dt

ż

S1

a

xΓx,Γxy dx

“

ż

S1

xΓxt,Γxy

|Γx|
dx

“

ż

S1

xΓtx,
Γx
|Γx|

y dx

“

ż

S1

xpκNqx, T y dx

“

ż

S1

xκxN ` κNx, T y dx

“

ż

S1

xκxN, T y
looomooon

0 since NKT

` κxNx, T y
looomooon

´κ2 since Nx“´κT

dx

“ ´

ż

S1

κ2 dx �

Propositions 2.1 and 2.1 establish that the Area and Length of Γt decrease with t. Thus
the flow can only last for as long as both are strictly positive. In fact, according to Propo-

sition 2.1, the area of the curve is strictly monotonically decreasing since
d

dt
Aptq “ ´2π so

Aptq “ ´2πt ` Ap0q. Resultantly, the flow can only last for t ď Ap0q{2π. Consequently,
computing the variations of area and length provides us geometric information of the curves
Γt; furthermore, the rather strong result for area provides an exact bound for how long curve
shortening can last before the curve collapses to a point. Thus, as long as Ap0q is finite,
the flow lasts for only a finite period of time. Another way to see this result is through the
avoidance principle.

Theorem 2.3 (Avoidance Principle). Let X, Y : S1 ˆ r0, T q ÞÑ R2 be closed embedded
plane curves evolving by curve shortening such that Xpx, 0q ‰ Y py, 0q for any x, y P S1.
Then Xpx, tq ‰ Y py, tq for any px, y, tq P S1 ˆ S1 ˆ r0, T q.

Proof. The Avoidance Principle means that when two curves start disjoint, they stay disjoint
if they evolve by the curve shortening flow. In fact, the proof of the Avoidance Principle
reveals that not only do they stay disjoint but also that their distance increases. Recall
that the distance between two sets X, Y Ă R2 is distpX, Y q “ inft|x ´ y| | x P X, y P Y u.
When X and Y are both compact, D px, yq P X ˆ Y such that distpX, Y q “ |x´ y|. To that
end, assume that d0 “ distpX0, Y0q ą 0 and let d : S1 ˆ S1 ˆ r0, T q ÞÑ R where dpx, y, tq “
|Xpx, tq´Y py, tq|. We prove that for every ε ą 0, dpx, y, tqeεp1`tq ą d0 for every t P r0, T q. To
that end, first observe that for t “ 0 we have dpx, y, 0qeε ě d0e

ε ą d0. Now suppose towards a
contradiction that D px, y, tq P S1ˆS1ˆr0, T q such that dpx, y, tqeεp1`tq ď d0; then we have in
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particular that Dptq :“ mintdpx, y, tqeεp1`tq | px, yq P S1ˆS1u ď d0 for some t; since Dptq is
continuous on r0, T q, we get from the IVT and the compactness of Xt and Yt that D px0, y0, t0q
such that Dpt0q “ dpx0, y0, t0qe

εp1`t0q “ d0. Moreover since Dptq ď d0 and is continuous over
t we have the following analytic conditions. First, D1pt0q “ pdpx, y, tqeεp1`tqqt |px0,y0,t0qď 0

since Dptq ą d0 on r0, t0q. Second, since Dptq “ mintdpx, y, tqeεp1`tq | px, yq P S1 ˆ S1u “

eεp1`tq mintdpx, y, tq | px, yq P S1 ˆ S1u, we have that at px0, y0q, the first partial derivatives
vanish, i.e dxpx0, y0, t0q “ dypx0, y0, t0q. Third, from the second-derivatives test, since Dpt0q

is a local minimum, the Hessian of D, Hpx, y, tq “

∣∣∣∣ B2
xd B2

xyd
B2
xyd B2

yd

∣∣∣∣ is non-negative at px0, y0, t0q.

Now we compute each of these derivatives. We assume that X is parametrized by arc-length;
note that this still leaves us free to choose a parametrization for Y .

B

Bx
dpx0, y0, t0q “

B

Bx
|Xpx0, t0q ´ Y py0, t0q|(2.3)

“
xXxpx0, t0q, Xpx0, t0q ´ Y py0, tqqy

|Xpx0, t0q ´ Y py0, t0q|
(2.4)

“ xXxpx0, t0q,
Xpx0, tq ´ Y py0, t0q

|Xpx0, t0q ´ Y py0, t0q|
y(2.5)

“ xTXpx0, t0q, wy “ 0(2.6)

(2.7)

when w “ Xpx0,t0q´Y py0,t0q
|Xpx0,tq´Y py0,t0q|

. A similar identity holds for dypx0, y0, t0q except that the sign is

switched:

B

By
dpx0, y0, t0q “ ´xTY py0, t0q, wy “ 0(2.8)

Consequently, both TY px0, t0q and TY py0, t0q are orthogonal to the same vector w. But now,
if we parametrize Y in the right way (there are only two possible parametrizations here),
TY px0, t0q and TY py0, t0q become parallel and since they are unit vectors we get TX “ TY .
Next, we compute the second derivatives that arise in the Hessian via the chain rule. As a

preliminary step, we differentiate wpx, y, tq “ Xpx,tq´Y py,tq
|Xpx,tq´Y py,tq|

via the quotient rule

wx “
TX |Xpx, tq ´ Y py, tq| ´ xT,wypXpx, tq ´ Y py, tqq

|Xpx, tq ´ Y py, tq|2
(2.9)

“
TX ´ xTX , wyw

|X ´ Y |
(2.10)

Similarly,

wy “ ´
TY ´ xTY , wyw

|X ´ Y |
(2.11)

We now use these in combination with the first derivatives to compute
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B2

Bx2
d “ xwx, TXy ` xw, pTXqxy “

TX ´ xTX , wyw

|X ´ Y |
` xw, κXNXy(2.12)

B2

By2
d “ xwy, TY y ` xw, pTY qyy “

TY ´ xTY , wyw

|X ´ Y |
´ xw, κYNY y(2.13)

B2

Bxy
d “ xwy, TXy ` xwy, pTXqyy “ ´

xTY ´ xTY , wyw, TXy

|X ´ Y |
(2.14)

Now, at px0, y0, t0q we have that TX “ TY ; furthermore, they are perpendicular to w which
for X is then the normal vector (since we chose the counterclockwise parametrization). It is
also the normal vector for Y at py0, t0q. Consequently the above equations can be written in
terms of curvature and d:

B2

Bx2
d “

1

d
` κX

B2

By2
d “

1

d
´ κy

B2

Bxy
d “ ´

1

d

Since the Hessian is non-negative at px0, y0, t0q we have that

B2

Bx2
d`

B2

By2
d´ 2

B2

Bxy
d “ κX ´ κY ě 0

Finally, it is time for the contradiction. The only derivative condition we haven’t used is
the one with respect to time. So let us calculate that. We have

0 ě e´εp1`tq
B

Bt
deεp1`tq(2.15)

“ εd` e´εp1`tqeεp1`tqdt(2.16)

“ εd`
xXt ´ Yt, X ´ Y y

|X ´ Y |
(2.17)

“ εd` xXt ´ Yt,
X ´ Y

|X ´ Y |
y(2.18)

ą xκXNX ´ κYNY , wy(2.19)

“ κX ´ κY ě 0(2.20)

This is a contradiction where the last line follows because at px0, y0, t0q, w “ NX “ NY .
At last, we have that deεp1`tq ą d0 for every ε ą 0 implying that d ě d0 ą 0. �

The proof of the avoidance principle gives us the following lesson: sometimes computing
in S1 ˆ S1 ˆ r0, T q is a good idea! Furthermore, the avoidance principle allows us to prove
finite flow time in another way: let Γ be an embedded closed curve that undergoes curve
shortening. Then since Γ0 is bounded, we can contain it inside a large circle Cr

0 of radius
r centered at the origin. Due to the avoidance principle Cr

t and Γt never touch; but Cr
t

shrinks to a point in finite time so the curve shortening flow also lasts on Γ for finite time.
Note, however, that Γt may not necessarily shrink to a point too; there may be a point x
and a sequence of times ttnu such that limκpx, tnq “ 8. In this case, x is termed a blowup
point or a singularity. This is observed in the case of a curve with self-intersections, where
loops collapse into cusps. One may ask how often curves blow up in this way; the answer
for closed embedded curves is never! In 1986, Gage and Hamilton showed that all convex
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curves shrink to a round point; in 1987 Grayson proved that every non-convex embedded
curve becomes convex, thus completing the celebrated Gage-Hamilton-Grayson (GGH)
Theorem which says that closed embedded curves evolving by curve shortening always
shrink to a point. In 1998, Huisken gave a short proof of the GGH theorem by identifying a
functional that qunatified the “straightness” of a curve. More precisely, if Z is an embedded
curve in R2 then its straightness Dpx, yq between two points Zpxq and Zpyq is the ratio of
the distance between the points in the plane and their distance on the curve. In other words,

Dpx, yq “
|Zpyq ´ Zpxq|

şy

x
ds

When Z evolves in time, we denote D as Dpx, y, yq. Huisken showed that D at its global
minimum over pairs of points on the curve is monotonic in time: this is the distance comparison principle.
Huisken’s main result involves showing that if the curve evolves into a singularity, then D
becomes arbitrarily small violating its monotonicity.

3. Huisken’s Distance Comparison Principles

Theorem 3.1. Let Z : I ˆ r0, T q ÞÑ R be a rectifiable non-closed curve evolving by curve
shortening. Suppose D attains a local minimum at pp, qq P I ˆ I at time t0 P r0, T q. Then

d

dt
Dpp, q, t0q ě 0

and equality holds if and only if Z is a straight line.

Proof. The proof of the distance comparison principle for non-closed curves follows almost
the same strategy as the proof of the avoidance principle: at the local minimum we get an
equality for first derivatives and inequality for second derivatives with respect to position.
We compute these derivatives and using the inequalities find a bound for some quantity that
shows up in the computation for the time derivative. To that end, let pp, q, t0q be a local
minimum over I ˆ I. Let d “ |Zpq, t0q ´Zpp, t0q| and l “

şq

p
ds. Now let’s compute the first

and second derivatives! First, Dx:

Dx “

x´Zx,Zpy,tq´Zpx,tqy
|Zpy,tq´Zpx,tq|

şy

x
ds´ p´1q|Zpyq ´ Zpxq|

p
şy

x
dsq2

(3.1)

“
x´Zx,

Zpy,tq´Zpx,tq
|Zpy,tq´Zpx,tq|

y
şy

x
ds` |Zpy, tq ´ Zpx, tq|

p
şy

x
dsq2

(3.2)

“
x´Zx, wy

şy

x
ds` |Zpy, tq ´ Zpx, tq|

p
şy

x
dsq2

(3.3)

“
x´Zx, wy
şy

x
ds

`
|Zpy, tq ´ Zpx, tq|

p
şy

x
dsq2

(3.4)

Here w “ Zpy,tq´Zpx,tq
|Zpy,tq´Zpx,tq|

. Note that at pp, q, t0q we have that Dxpp, q, t0q “
x´Zxpp,t0q,wy

l
` d

l2
“

0 so xZxpp, t0q, wy “ d{l. The computation for Dy is almost identical except the signs are
flipped since d

dy

şy

x
ds “ 1 instead of ´1 and |Zpy, tq´Zpx, tq|y “ xZy, wy (for the x variable,

|Zpy, tq ´ Zpx, tq|x “ x´Zx, wy).
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Dy “
xZy, wy
şy

x
ds

´
|Zpy, tq ´ Zpx, tq|

p
şy

x
dsq2

(3.5)

Consequently, at pp, q, t0q we again get that Dypp, q, t0q “ d{l. To compute the second
derivatives, we first make a preliminary computation of wx and wy:

wx “
´Zx|Zpy, tq ´ Zpx, tq| ´ x´Zx, wypZpy, tq ´ Zpx, tqq

|Zpy, tq ´ Zpx, tq|2
(3.6)

“
´Zx ` xZx, wy

Zpy,tq´Zpx,tq
|Zpy,tq´Zpx,tq|

|Zpy, tq ´ Zpx, tq|
(3.7)

“
´Zx ` xZx, wyw

|Zpy, tq ´ Zpx, tq|
(3.8)

Similarly,

wy “
Zy ´ xZy, wy

|Zpy, tq ´ Zpx, tq|
(3.9)

Now onto computing the second derivatives:

Dxx “
px´Zxx, wxy ` x´Zx, wyq

şy

x
ds´ p´1qx´Zx, wy

p
şy

x
dsq2

(3.10)

`
x´Zx, wyp

şy

x
dsq2 ´ 2

şy

x
dsp´1q|Zpy, tq ´ Zpx, tq|

p
şy

x
dsq4

(3.11)

“
x´Zxx, wy

p
şy

x
dsq

´
xZx, wxy
şy

x
ds

´
xZx, wy

p
şy

x
dsq2

´
xZx, wy

p
şy

x
dsq2

` 2
|Zpy, tq ´ Zpx, tq|

p
şy

x
dsq3

(3.12)

“ ´
xZxx, wy

p
şy

x
dsq

´
xZx,

´Zx`xZx,wyw
|Zpy,tq´Zpx,tq|

y
şy

x
ds

´ 2
xZx, wy

p
şy

x
dsq2

` 2
|Zpy, tq ´ Zpx, tq|

p
şy

x
dsq3

(3.13)

“ ´
xZxx, wy

p
şy

x
dsq

´
xZx,´Zxy ` xZx, wy

2

|Zpy, tq ´ Zpx, tq|
şy

x
ds
´ 2

xZx, wy

p
şy

x
dsq2

` 2
|Zpy, tq ´ Zpx, tq|

p
şy

x
dsq3

(3.14)

“ ´
xZxx, wy

p
şy

x
dsq

`
1´ xZx, wy

2

|Zpy, tq ´ Zpx, tq|
şy

x
ds
´ 2

xZx, wy

p
şy

x
dsq2

` 2
|Zpy, tq ´ Zpx, tq|

p
şy

x
dsq3

(3.15)

At pp, q, t0q, xZx, wy “ d{l so

Dxxpp, q, t0q “ ´
xZxx, wy

l
`

1´ d2

l2

dl
´ 2

d{l

l2
` 2

d

l3
(3.16)

“ ´
xZxx, wy

l
`

1

dl
´
d

l3
(3.17)

The computation for Dyy is almost exactly the same except that the sign flippage is almost
divinely convenient:
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Dyy “
pxZyy, wy ` xZy, wyyq

şy

x
ds´ xZy, wy

p
şy

x
dsq2

(3.18)

´
xZy, wyp

şy

x
dsq2 ´ 2

şy

x
ds|Zpy, tq ´ Zpx, tq|

p
şy

x
dsq4

(3.19)

“
xZyy, wy

p
şy

x
dsq

`
xZy, wyy
şy

x
ds

´
xZy, wy

p
şy

x
dsq2

´
xZy, wy

p
şy

x
dsq2

` 2
|Zpy, tq ´ Zpx, tq|

p
şy

x
dsq3

(3.20)

“
xZyy, wy

p
şy

x
dsq

`
xZy,

Zy´xZy ,wyw

|Zpy,tq´Zpx,tq|
y

şy

x
ds

´ 2
xZy, wy

p
şy

x
dsq2

` 2
|Zpy, tq ´ Zpx, tq|

p
şy

x
dsq3

(3.21)

“
xZyy, wy

p
şy

x
dsq

`
xZy, Zyy ` xZy, wy

2

|Zpy, tq ´ Zpx, tq|
şy

x
ds
´ 2

xZy, wy

p
şy

x
dsq2

` 2
|Zpy, tq ´ Zpx, tq|

p
şy

x
dsq3

(3.22)

“
xZyy, wy

p
şy

x
dsq

`
1´ xZy, wy

2

|Zpy, tq ´ Zpx, tq|
şy

x
ds
´ 2

xZy, wy

p
şy

x
dsq2

` 2
|Zpy, tq ´ Zpx, tq|

p
şy

x
dsq3

(3.23)

At pp, q, t0q, xZx, wy “ d{l so

Dxxpp, q, t0q “
xZyy, wy

l
`

1´ d2

l2

dl
´ 2

d{l

l2
` 2

d

l3
(3.24)

“
xZyy, wy

l
`

1

dl
´
d

l3
(3.25)

Thus, we see that between Dxx and Dyy only one sign flips: the one on the all important
curvature term xZyy, wy{l/ Finally, we compute Dxy “ Dyx:

Dyx “
pxZxy, wy ` xZy, wxyq

şy

x
ds´ p´1qxZy, wy

p
şy

x
dsq2

(3.26)

´
x´Zx, wyp

şy

x
dsq2 ´ 2

şy

x
dsp´1q|Zpy, tq ´ Zpx, tq|

p
şy

x
dsq4

(3.27)

“
xZy, wxy
şy

x
ds

`
xZx, wy

p
şy

x
dsq2

`
xZy, wy

p
şy

x
dsq2

` 2
|Zpy, tq ´ Zpx, tq|

p
şy

x
dsq3

(3.28)

“
xZy,

´Zx`xZx,wyw
|Zpy,tq´Zpx,tq|

y
şy

x
ds

`
xZx, wy

p
şy

x
dsq2

`
xZy, wy

p
şy

x
dsq2

` 2
|Zpy, tq ´ Zpx, tq|

p
şy

x
dsq3

(3.29)

“
xZy,´Zxy

|Zpy, tq ´ Zpx, tq|
şy

x
ds
`

xZx, wyxZy, wy

|Zpy, tq ´ Zpx, tq|
şy

x
ds

(3.30)

`
xZx, wy

p
şy

x
dsq2

`
xZy, wy

p
şy

x
dsq2

` 2
|Zpy, tq ´ Zpx, tq|

p
şy

x
dsq3

(3.31)

Computing at pp, q, t0q we have:
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Dyxpp, q, t0q “ ´
xZy, Zxy

dl
`
d2{l2

dl
`
d{l

l2
`
d{l

l2
` 2

d

l3
(3.32)

“ ´
xZy, Zxy

d
`

5d

l3
(3.33)

Finally, computing the Hessian Hpp, q, t0q “ Dxx `Dyy ´ 2Dxy ě 0 we get

Hpp, q, t0q “ ´
xZxx, wy

l
`

1

dl
´
d

l3
`
xZyy, wy

l
`

1

dl
´
d

l3
` 2

xZy, Zxy

d
´

10d

l3
(3.34)

“
1

l
xZyy ´ Zxx, wy ´

10d

l3
`

1

d

´2

l
`

1

2
|Zy ` Zx| ´

1

2
|Zy ´ Zx|

¯

ě 0(3.35)

But the last two terms on the right are both negative (one by choosing an appropriate
parametrization and the other by observing that l ą d at a local minimum and Zx ` Zy is
parallel to w). Consequently,

1

l
xZyy ´ Zxx, wy ě 0(3.36)

At last, we compute the time derivative of D:

d

dt
Dpp, q, tq “

d

dt

|Zpx, tq ´ Zpy, tq|
şy

x
ds

(3.37)

“
xZtpx, tq ´ Ztpy, tq, wy

şy

x
ds´ |Zpx, tq ´ Zpy, tq| d

dt

şy

x
ds

p
şy

x
dsq2

(3.38)

“
xZyy ´ Zxx, wy

şq

p
ds

´
d

l2
d

dt

ż q

p

ds(3.39)

ě ´
d

l2
d

dt

ż q

p

ds(3.40)

Here the last step follows from Equation 3.36. Finally, from Proposition 2.2 we have that
pd{dtqds “ ´κ2 du; as a consequence we have that ´ d

l2
d
dt

şq

p
ds “ d

l2

şy

x
´κ2 du ě 0. Combining

this result with Equation 3.40 we have that d
dt
Dpp, q, tq ě 0. Furthermore, equality holds if

and only if all the inequalities are equalities; this would require
şq

p
κ2 du to be 0 and hence

for κ “ 0 for u P rp, qs. Consequently, Z had to be a straight line. �

Huisken’s distance comparison principle cannot be applied straightaway to closed curves
because then D would become periodic over I ˆ I; furthermore lpx, y, tq is only smoothly
defined up to halfway around the length of the curve (because there are always two possible
lengths between two points on a closed curve and l represents the shortest one). As a
consequence, the quantity l is replaced by ψ “ L

π
sinp lπ

L
q where L is the length of Z. The

distance comparison principle for closed curves then applies to the functional F “ |Zpx, tq´
Zpy, tq|{ψ.

4. Application to curves with 1 immersed disk

In this section we explore a way to use Huisken’s measure of straightness to study the

problem of a curve with an immersed disk. Note that X : D
2
ÞÑ R2 is an immersion
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whenever |JX | ‰ 0 where J0 is the Jacobian of X. Then XpBD
2
q is a curve in R2 and is said

to bound an immersed disk. One such example of a curve is the following class of curves we
term “crab curves”

Figure 2. A disk immersed in the plane (left) and the corresponding curve (right)

Here the immersion is given by overlapping one “arm” of the disk over the other (like a
crab) and the curve is obtained by tracking the boundary of the disk all the way under the
overlap. We ask the following question: if we evolve the curve through curve shortening,
when does the flow preserve the immersed disk? The answer seems to depend on the size of
the overlap with respect to the size of the cavity (or the ratio of the upper bulb to the lower
bulb of the figure-eight seen in the curve). On one hand, when the overlap is significantly
larger than the cavity, a singularity develops:

Figure 3. A crab curve which develops a singularity

On the other hand, when the cavity is larger than the overlap, then the curve evolves
smoothly:
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Figure 4. A crab curve which evolves smoothly

To possibly classify the crab curves which shorten smoothly, we suggest the following three
strategies:

(1) The area ratio of the figure-eight: Let A and B denote the upper and lower bulbs
of the figure-eight found in the crab curve. Then the area ratio R “ areapAq{areapBq.
Experimentally, it seems that when R ă 1 the curve develops a singularity and when
R ą 1 it evolves smoothly. In the singular cases Rptq Ñ S for some constant S ą 0
as tÑ T , the blowup time; on the other hand in the smooth cases Rptq approaches 0
as the two self-intersections of the curve resolve without it developing a singularity.

(2) Computing F px, y, tq: Instead of studying a global property like the area ratio, we
may also want to consider local properties like the straightness F px, y, tq for pairs
of points on the curve. In fact, intuitively, F px, y, tq should reach a local maximum
on the points of B that determine its diameter; the only issue is that the segment
connecting is entirely outside the disk. A more refined approach would be to restrict
F to px, yq P Γ ˆ Γ such that if s is the segment joining Γpxq and Γpyq then X´1psq

is a chord in D
2
.

(3) Hairclips: Our experiments reveal that as the curve evolves, the two arms de-
tract from each other and the cavity becomes less concave (due to curve shortening).
Consequently, the curve has two competing aspects: the shortening cavity and the
withdrawing arms. In fact, the withdrawing arms seem to act as solitons. Conse-
quently, it could be fruitful to address examples of curves which have local regions
that behave like solitons and compare them to crab curves.
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