
WAVELETS ON GRAPHS

SHASHANK SULE

Contents

Laplacian + Operator theory = Wavelets 1
To and from the wavelet domain 3
Questions 6
References 6

Laplacian + Operator theory = Wavelets

OK, in this note we talk about wavelets on graphs. Note that we
work with the non-normalized graph Laplacian:

L = V ΛV ∗

Now, given ANY complete matrix T we can define a function on T
by:

g(T ) := Qg(Λ)Q−1

where

g(Λ) =

g(λ1)
g(λ2)

. . .


We do the same for the graph wavelet kernel g:

Tg = V g(Λ)V ∗

The scaling is done using Tg = V g(tΛ)V ∗. Finally, the wavelet local-
ized at the vertex n with scaling t is computed using the action of Tg
on δn, the vector taking the value 1 at the vertex n and 0 otherwise:

ψt,n = Tgδn = V g(Λ)V ∗δn

Date: November 2019.
1



2 SHASHANK SULE

The wavelet coefficients can be found by computing the inner product
of a given function f with the wavelet ψt,n:

Wf (t, n) = 〈ψt,n, f〉

Note that when the (real valued) function g is in L2
µ(R) where dµ =

dt/t then we can actually recover f from the wavelet coefficients. First,
for notational clarity, let Ψt denote the n×n matrix whose jth column
is ψt,j (thus Ψt = V g(tΛ)V ∗I). And the column vector of wavelet
coefficients of f is denoted w. Note that w = Ψ∗tf . Furthermore, let

Cg =

∫
R+

(g(t))2

t
dt <∞

Then, look at the following computation:

1

Cg

∫
R+

Ψtw
dt

t
=

1

Cg

∫
R+

ΨtΨ
∗
tf
dt

t

=
1

Cg

∫
R+

V g(tΛ)V ∗IV g(tΛ)V ∗f
dt

t

=
1

Cg

∫
R+

V (g(tΛ))2V ∗f
dt

t

= V
1

Cg

∫
R+

g(tΛ)

t
dtV ∗f

= V

[
0

In−1

]
V ∗f

= f − f̂(0)χ0

Here χn is the nth Fourier basis vector. This is a more notation
friendly version of Lemma 1 from [1].

The rest of the lemmas are pretty technical. Lemmas 5.2,3,and 4 are
graph theoretic and Lemma 5.5 says that if two kernel functions are
within a given bound then the respective entries of their corresponding
wavelets are also within the same bound. Lemma 5.6 says that given
a kernel which is K + 1 times continuously differentiable, it is within
a K + 1 degree polynomial (in t) of a kernel which is a K degree
polynomial. Finally, theorem 5.7 states that the value taken at vertex
m by a normalized wavelet localized at vertex n grows at most linearly
with t when t is sufficiently small and the prefactor is given by the
regularity. So it actually makes sense to not have too-regular a kernel,
because the prefactor might get too large, if the maximal eigenvalue



WAVELETS ON GRAPHS 3

is bigger than 1. If the maximal eigenvalue is less than 1, then use as
large a regularity as possible!

On scaling functions: Wavelets defined via the wavelet operator
might not pick up low frequencies so we need a “lowpass” filter, given
by another kernel h which has different properties at 0, i.e h(0) 6= 0.

The next main feature is that we approximate the Wavelet operator
via a polynomial, which magically eases the computation and recovery
in the Wavelet frame.

To and from the wavelet domain

First observe that we can only compute the Wavelet coefficients for
finitely many scales. So we tweak our notation a little bit and say
that Wf (tj, n) is the wavelet coefficient for f scaled at tj localized at
n. Suppose there are J scales and N vertices. Counting the low-pass
coefficients (with scale equal to 1) we get N(J + 1) coefficients:

wj = Ψ∗tjf

Also observe that Ψt is self-adjoint so wj = Ψtjf .
Now, computing these coefficients is hard because we need to do

a spectral decomposition on the laplacian and that is a truly unstable
problem when the graph is dense. Instead, we approximate Ψtj cleverly
with Chebyshev polynomials. This is motivated due to the fact that

Ψtj = V g(tjΛ)V ∗I = g(tjL)

But g has an expansion in the basis of Chebyshev polynomials. Al-
though Chebyshev polynomials are canonically defined on the interval
[−1, 1] they may be supplanted to any closed interval via a linear trans-
formation. In particular, since we only really care about the values g
takes from 0 to tjλmax, we transplant the Chebyshev polynomials to
[0, tjλmax] for each scale. For notational convenience, we just denote
the nth Chebyshev polynomial for the jth scaling factor as T jn.

g(tjx) =
∞∑
n=0

cj,nT
j
n(x)

We approximate g(tjx) by using only the first Mj terms:

g(tjx) ≈ pj(x) =

Mj∑
n=0

cj,nT
j
n(x)

The corresponding matrix equation is



4 SHASHANK SULE

g(tjL) ≈ pj(L) =

Mj∑
n=0

cj,nT
j
n(L)

Then

pj(L)f =

Mj∑
n=0

cj,nT
j
n(L)f

This is where the Chebyshev magic comes in: we exploit the recur-
rence relation

T jk+2(L) = q(L)T jk+1(L)− T jk (L)

Here q is just a linear polynomial that comes out of adjusting the
Chebyshev recurrence relation for the supplanting. Basically the above
identity tells us that we only need to compute the first two evaluations
of the polynomial for every scale; the rest can be found via the recur-
rence relation. Of course, the first two Chebyshev polynomials are the
1 polynomial and a linear polynomial so we needn’t spectrally decom-
pose the Laplacian. So we have a Fast Wavelet transform, W, one that
takes a f from RN = R|V | to R(J+1)N . The action of W on f is given
as follows:

Wf =

p0(L)f
...

pJ(L)f


So we get the wavelet coefficients with relative ease. What about

reconstruction? Observe that Wf = w is an overcomplete system
because we have too many equations. So we will go for the least squares
approximation to f :

f = argmin
x
||Wx− w||2

From some least squares approximation theory found in [2] we know
that

f = (W ∗W )−1W ∗w

So we need to compute the adjoint of the Wavelet transform, W ∗

(and hopefully be able to invert it). Recall that when T : H1 7→ H2 is
a linear map between two Hilbert spaces, the (Hermitian) adjoint of T
denoted T ∗ is the map from H2 to H1 such that



WAVELETS ON GRAPHS 5

〈Tf, g〉H2 = 〈f, T ∗g〉H1

For finite dimensional vector spaces the Hermitian adjoint coincides
with the adjoint of the map so it can be computed as the conjugate
transpose of a matrix. What is the adjoint of the Wavelet operator?
Note that when g ∈ RN(J+1) then we can express it via the block form:

g =

g0...
gJ


We can use the block form to compute the inner product, viewing g

and Wf as J+1-dimensional vectors where the elements are themselves
N dimensional:

〈Wf, g〉RN(J+1) =
J∑
j=0

〈pj(L)f, gj〉RN

=
J∑
j=0

〈f, pj(L)gj〉RN

= 〈f,
j∑
j=0

pj(L)gj〉RN

= 〈f,W ∗g〉

So the operator W ∗ that takes g to
∑j

j=0 pj(L)gj is the adjoint we
were looking for. Furthermore, it can also be computed fast due to the
fast polynomial computation.

But, W ∗W can be computed even faster. Look at the following
calculation:

W ∗W =
J∑
j=0

pj(L)(pj(L)f) =
( J∑
j=0

pj(L)
)2
f

Set P (x) = (
∑J

j=0 pj(x))2 then the operator in the above equation

is just P (L). Finally, we try to represent P (x) in the Chebyshev basis.
But we run into a problem because each pj is a linear combination of
Chebyshev polynomials over different intervals. For example, if t1 = 1
and t2 = 2 then p1 is a linear combination of Chebyshevs over [0, λmax]
while p2 is a linear combination of Chebyshevs over [0, 2λmax]. The
cheap and dirty way is to pick the maximal tj so that all possible



6 SHASHANK SULE

tjλ are in the interval [0, tmaxλmax]. So we can use just one system of
Chebyshev polynomials for all scales (we’ll just call them Tn, dropping
the subscript). Now we are ready to get the expansion for P (x) =∑2maxjMj

k=0 dkTk. The coefficients can be recovered pretty easily due to
the properties of the Chebyshev polynomials. Lastly, we find a formula
for W ∗Wf :

W ∗Wf = P (L)f =

2maxjMj∑
k=0

dkTLf

Once again, we can use the recurrence relation on the Chebyshev
polynomials to avoid the spectral calamity of the Laplacian.

Conclusion: We have W ∗ and W ∗W . Invert the latter and multiply
to recover.

Questions

(1) Is there an error-optimal set of scales tj or approximation degree
Mj? What are some possible designs?

(2) Can we use orthogonal polynomials other than Chebyshevs?
Seemingly the most attractive property is not the recurrence
relation but the multiplication formula. Furthermore, they are
the sup norm maximizing polynomials.

(3) Find non-polynomial kernel and low-pass designs.
(4) I feel cheated. Eventually, we have to invert a large system

which isn’t great, even though the matrix is symmetric because
a bad condition number spells the end for Cholesky (or for gra-
dient descent). What about inversion-friendly designs? What
can we even say about the condition number for W ∗W? Same
goes for diffusion maps.

References

[1] David K Hammond, Pierre Vandergheynst, and Rémi Gribonval.
“Wavelets on graphs via spectral graph theory”. In: Applied and
Computational Harmonic Analysis 30.2 (2011), pp. 129–150.

[2] Peter J Olver, Chehrzad Shakiban, and Chehrzad Shakiban. Ap-
plied linear algebra. Vol. 1. Springer, 2006.


	Laplacian + Operator theory = Wavelets
	To and from the wavelet domain
	Questions
	References

